
The minted package:
Highlighted source code in LATEX

Geoffrey M. Poore
gpoore@gmail.com

github.com/gpoore/minted

Originally created and maintained (2009–2013) by
Konrad Rudolph

v2.4 from 2016/07/20

Abstract

minted is a package that facilitates expressive syntax highlighting using the
powerful Pygments library. The package also provides options to customize
the highlighted source code output.

License

LaTeX Project Public License (LPPL) version 1.3.

Additionally, the project may be distributed under the terms of the 3-Clause
(“New”) BSD license: http://opensource.org/licenses/BSD-3-Clause.

1

gpoore@gmail.com
https://github.com/gpoore/minted
http://www.latex-project.org/lppl.txt
http://opensource.org/licenses/BSD-3-Clause

Contents

1 Introduction 4

2 Installation 4

2.1 Prerequisites . 4

2.2 Required packages . 5

2.3 Installing minted . 5

3 Basic usage 6

3.1 Preliminary . 6

3.2 A minimal complete example . 6

3.3 Formatting source code . 7

3.4 Using different styles . 8

3.5 Supported languages . 9

4 Floating listings 9

5 Options 10

5.1 Package options . 10

5.2 Macro option usage . 14

5.3 Available options . 16

6 Defining shortcuts 28

7 FAQ and Troubleshooting 30

Version History 33

8 Implementation 40

8.1 Required packages . 40

8.2 Package options . 41

8.3 Input, caching, and temp files . 43

8.4 OS interaction . 45

8.5 Option processing . 47

2

8.6 Internal helpers . 63

8.7 Public API . 70

8.8 Command shortcuts . 74

8.9 Float support . 76

8.10 Epilogue . 77

8.11 Final cleanup . 78

9 Implementation of compatibility package 78

3

1 Introduction

minted is a package that allows formatting source code in LATEX. For example: for
compatibility with earlier versionsfor compatibility with earlier versions

\begin{minted}{<language>}
<code>

\end{minted}

will highlight a piece of code in a chosen language. The appearance can be
customized with a number of options and color schemes.

Unlike some other packages, most notably listings, minted requires the installation
of additional software, Pygments. This may seem like a disadvantage, but there
are also significant advantages.

Pygments provides superior syntax highlighting compared to conventional packages.
For example, listings basically only highlights strings, comments and keywords.
Pygments, on the other hand, can be completely customized to highlight any kind
of token the source language might support. This might include special formatting
sequences inside strings, numbers, different kinds of identifiers and exotic constructs
such as HTML tags.

Some languages make this especially desirable. Consider the following Ruby code
as an extreme, but at the same time typical, example:

class Foo
def init
pi = Math::PI
@var = "Pi is approx. #{pi}"

end
end

Here we have four different colors for identifiers (five, if you count keywords) and
escapes from inside strings, none of which pose a problem for Pygments.

Additionally, installing Pygments is actually incredibly easy (see the next section).

2 Installation

2.1 Prerequisites

Pygments is written in Python, so make sure that you have Python 2.6 or later
installed on your system. This may be easily checked from the command line:

4

$ python --version
Python 2.7.5

If you don’t have Python installed, you can download it from the Python website
or use your operating system’s package manager.

Some Python distributions include Pygments (see some of the options under
“Alternative Implementations” on the Python site). Otherwise, you will need
to install Pygments manually. This may be done by installing setuptools, which
facilitates the distribution of Python applications. You can then install Pygments
using the following command:

$ sudo easy_install Pygments

Under Windows, you will not need the sudo, but may need to run the command
prompt as administrator. Pygments may also be installed with pip:

$ pip install Pygments

If you already have Pygments installed, be aware that the latest version is recom-
mended (at least 1.4 or later). Some features, such as escapeinside, will only
work with 2.0+. minted may work with versions as early as 1.2, but there are no
guarantees.

2.2 Required packages

minted requires that the following packages be available and reasonably up to date
on your system. All of these ship with recent TEX distributions.

• keyval

• kvoptions

• fancyvrb

• fvextra

• upquote

• float

• ifthen

• calc

• ifplatform

• pdftexcmds

• etoolbox

• xstring

• xcolor

• lineno

• framed

• shellesc (for
luatex 0.87+)

2.3 Installing minted

You can probably install minted with your TEX distribution’s package manager.
Otherwise, or if you want the absolute latest version, you can install it manually
by following the directions below.

5

http://www.python.org/download/
http://pypi.python.org/pypi/setuptools

You may download minted.sty from the project’s homepage. We have to install
the file so that TEX is able to find it. In order to do that, please refer to the TEX
FAQ. If you just want to experiment with the latest version, you could locate your
current minted.sty in your TEX installation and replace it with the latest version.
Or you could just put the latest minted.sty in the same directory as the file you
wish to use it with.

3 Basic usage

3.1 Preliminary

Since minted makes calls to the outside world (that is, Pygments), you need to tell
the LATEX processor about this by passing it the -shell-escape option or it won’t
allow such calls. In effect, instead of calling the processor like this:

$ latex input

you need to call it like this:

$ latex -shell-escape input

The same holds for other processors, such as pdflatex or xelatex.

You should be aware that using -shell-escape allows LATEX to run potentially
arbitrary commands on your system. It is probably best to use -shell-escape
only when you need it, and to use it only with documents from trusted sources.

Working with OS X

If you are using minted with some versions/configurations of OS X, and are using
caching with a large number of code blocks (> 256), you may receive an error like

OSError: [Errno 24] Too many open files:

This is due to the way files are handled by the operating system, combined with
the way that caching works. To resolve this, you may use the OS X commands
launchctl limit maxfiles or ulimit -n to increase the number of files that
may be used.

3.2 A minimal complete example

The following file minimal.tex shows the basic usage of minted.

6

https://github.com/gpoore/minted
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

\documentclass{article}

\usepackage{minted}

\begin{document}
\begin{minted}{c}
int main() {

printf("hello, world");
return 0;

}
\end{minted}
\end{document}

By compiling the source file like this:

$ pdflatex -shell-escape minimal

we end up with the following output in minimal.pdf:

int main() {
printf("hello, world");
return 0;

}

3.3 Formatting source code

Using minted is straightforward. For example, to highlight some Python sourceminted
code we might use the following code snippet (result on the right):

\begin{minted}{python}
def boring(args = None):

pass
\end{minted}

def boring(args = None):
pass

Optionally, the environment accepts a number of options in key=value notation,
which are described in more detail below.

For a single line of source code, you can alternatively use a shorthand notation:\mint

\mint{python}|import this| import this

This typesets a single line of code using a command rather than an environment,
so it saves a little typing, but its output is equivalent to that of the minted
environment.

7

The code is delimited by a pair of identical characters, similar to how \verb works.
The complete syntax is \mint[〈options〉]{〈language〉}〈delim〉〈code〉〈delim〉, where
the code delimiter can be almost any punctuation character. The 〈code〉 may also
be delimited with matched curly braces {}, so long as 〈code〉 itself does not contain
unmatched curly braces. Again, this command supports a number of options
described below.

Note that the \mint command is not for inline use. Rather, it is a shortcut for
minted when only a single line of code is present. The \mintinline command is
provided for inline use.

Code can be typeset inline:\mintinline

X\mintinline{python}{print(x**2)}X Xprint(x**2)X

The syntax is \mintinline[〈options〉]{〈language〉}〈delim〉〈code〉〈delim〉. The
delimiters can be a pair of characters, as for \mint. They can also be a matched
pair of curly braces, {}.

The command has been carefully crafted so that in most cases it will function
correctly when used inside other commands.1

Finally, there’s the \inputminted command to read and format whole files. Its\inputminted
syntax is \inputminted[〈options〉]{〈language〉}{〈filename〉}.

3.4 Using different styles

Instead of using the default style you may choose another stylesheet provided by\usemintedstyle
Pygments. This may be done via the following:

\usemintedstyle{name}

The full syntax is \usemintedstyle[〈language〉]{〈style〉}. The style may be set
for the document as a whole (no language specified), or only for a particular
language. Note that the style may also be set via \setminted and via the optional
argument for each command and environment.2

To get a list of all available stylesheets, see the online demo at the Pygments
website or execute the following command on the command line:

$ pygmentize -L styles
1For example, \mintinline works in footnotes! The main exception is when the code contains

the percent % or hash # characters, or unmatched curly braces.
2Version 2.0 added the optional language argument and removed the restriction that the

command be used in the preamble.

8

http://pygments.org/demo/
http://pygments.org/demo/

Creating your own styles is also easy. Just follow the instructions provided on the
Pygments website.

3.5 Supported languages

Pygments supports over 300 different programming languages, template languages,
and other markup languages. To see an exhaustive list of the currently supported
languages, use the command

$ pygmentize -L lexers

4 Floating listings

minted provides the listing environment to wrap around a source code block.listing
This puts the code into a floating box. You can also provide a \caption and a
\label for such a listing in the usual way (that is, as for the table and figure
environments):

\begin{listing}[H]
\mint{cl}/(car (cons 1 '(2)))/
\caption{Example of a listing.}
\label{lst:example}

\end{listing}

Listing \ref{lst:example} contains an example of a listing.

will yield:

(car (cons 1 '(2)))

Listing 1: Example of a listing.

Listing 1 contains an example of a listing.

The \listoflistings macro will insert a list of all (floated) listings in the docu-\listoflistings
ment:

\listoflistings
List of Listings

1 Example of a listing. 9

9

http://pygments.org/docs/styles/#creating-own-styles

Customizing the listing environment

By default, the listing environment is created using the float package. In that case,
the \listingscaption and \listoflistingscaption macros described below
may be used to customize the caption and list of listings. If minted is loaded with
the newfloat option, then the listing environment will be created with the more
powerful newfloat package instead. newfloat is part of caption, which provides many
options for customizing captions.

When newfloat is used to create the listing environment, customization should be
achieved using newfloat’s \SetupFloatingEnvironment command. For example,
the string “Listing” in the caption could be changed to “Program code” using

\SetupFloatingEnvironment{listing}{name=Program code}

And “List of Listings” could be changed to “List of Program Code” with

\SetupFloatingEnvironment{listing}{listname=List of Program Code}

Refer to the newfloat and caption documentation for additional information.

(Only applies when package option newfloat is not used.) The string “Listing”\listingscaption
in a listing’s caption can be changed. To do this, simply redefine the macro
\listingscaption, for example:

\renewcommand{\listingscaption}{Program code}

(Only applies when package option newfloat is not used.) Likewise, the\listoflistingscaption
caption of the listings list, “List of Listings,” can be changed by redefining
\listoflistingscaption:

\renewcommand{\listoflistingscaption}{List of Program Code}

5 Options

5.1 Package options

To control how LATEX counts the listing floats, you can pass either the sectionchapter
or chapter option when loading the minted package. For example, the following
will cause listings to be counted by chapter:

10

http://www.ctan.org/pkg/newfloat
http://www.ctan.org/pkg/caption

\usepackage[chapter]{minted}

minted works by saving code to a temporary file, highlighting the code via Pygmentscache=〈boolean 〉
(default: true) and saving the output to another temporary file, and inputting the output into the

LATEX document. This process can become quite slow if there are several chunks of
code to highlight. To avoid this, the package provides a cache option. This is on
by default.

The cache option creates a directory _minted-〈jobname〉 in the document’s root
directory (this may be customized with the cachedir option).3 Files of highlighted
code are stored in this directory, so that the code will not have to be highlighted
again in the future. In most cases, caching will significantly speed up document
compilation.

Cached files that are no longer in use are automatically deleted.4

This allows the directory in which cached files are stored to be specified. Pathscachedir=〈directory 〉
(def: _minted-〈jobname 〉) should use forward spaces, even under Windows.

Special characters must be escaped. For example, cachedir=~/mintedcache
would not work because the tilde ~ would be converted into the LATEX com-
mands for a non-breaking space, rather than being treated literally. Instead, use
\string~/mintedcache, \detokenize{~/mintedcache}, or an equivalent solu-
tion.

Paths may contain spaces, but only if the entire 〈directory〉 is wrapped in curly
braces {}, and only if the spaces are quoted. For example,

cachedir = {\detokenize{~/"minted cache"/"with spaces"}}

Note that the cache directory is relative to the outputdir, if an outputdir is
specified.

In some cases, it may be desirable to use minted in an environment in whichfinalizecache=〈boolean 〉
(default: false) -shell-escape is not allowed. A document might be submitted to a publisher or

preprint server or used with an online service that does not support -shell-escape.
This is possible as long as minted content does not need to be modified.

Compiling with the finalizecache option prepares the cache for use in an envi-
ronment without -shell-escape.5 Once this has been done, the finalizecache

3The directory is actually named using a “sanitized” copy of 〈jobname〉, in which spaces and
asterisks have been replaced by underscores, and double quotation marks have been stripped. If
the file name contains spaces, \jobname will contain a quote-wrapped name, except under older
versions of MiKTeX which used the name with spaces replaced by asterisks. Using a “sanitized”
〈jobname〉 is simpler than accomodating the various escaping conventions.

4This depends on the main auxiliary file not being deleted or becoming corrupted. If that
happens, you could simply delete the cache directory and start over.

5Ordinarily, cache files are named using an MD5 hash of highlighting settings and highlighted

11

option may be swapped for the frozencache option, which will then use the frozen
(static) cache in the future, without needing -shell-escape.

Use a frozen (static) cache created with the finalizecache option. Whenfrozencache=〈boolean 〉
(default: false) frozencache is on, -shell-escape is not needed, and Python and Pygments

are not required. In addition, any external files accessed through \inputminted
are no longer necessary.

This option must be used with care. A document must be in final form,
as far as minted is concerned, before frozencache is turned on, and the
document must have been compiled with finalizecache. When this
option is on, minted content cannot be modified, except by editing the
cache files directly. Changing any minted settings that require Pygments
or Python is not possible. If minted content is incorrectly modified after
frozencache is turned on, minted cannot detect the modification.

If you are using frozencache, and want to verify that minted settings or content
have not been modified in an invalid fashion, you can test the cache using the
following procedure.

1. Obtain a copy of the cache used with frozencache.

2. Compile the document in an environment that supports -shell-escape, with
finalizecache=true and frozencache=false. This essentially regenerates
the frozen (static) cache.

3. Compare the original cache with the newly generated cache. Under Linux
and OS X, you could use diff; under Windows, you probably want fc. If
minted content and settings have not been modified in an invalid fashion, all
files will be identical (assuming that compatible versions of Pygments are
used for both caches).

This uses fancyvrb alone for all typesetting; Pygments is not used. This trades syntaxdraft=〈boolean 〉
(default: false) highlighting and some other minted features for faster compiling. Performance

should be essentially the same as using fancyvrb directly; no external temporary
files are used. Note that if you are not changing much code between compiles, the
difference in performance between caching and draft mode may be minimal. Also
note that draft settings are typically inherited from the document class.

Draft mode does not support autogobble. Regular gobble, linenos, and most
other options not related to syntax highlighting will still function in draft mode.

Documents can usually be compiled without shell escape in draft mode. The
ifplatform package may issue a warning about limited functionality due to shell
escape being disabled, but this may be ignored in almost all cases. (Shell escape

text. finalizecache renames cache files using a listing<number>.pygtex scheme. This makes
it simpler to match up document content and cache files, and is also necessary for the XeTeX
engine since prior to TeX Live 2016 it lacked the built-in MD5 capabilities that pdfTeX and
LuaTeX have.

12

is only really required if you have an unusual system configuration such that the
\ifwindows macro must fall back to using shell escape to determine the system.
See the ifplatform documentation for more details: http://www.ctan.org/pkg/
ifplatform.)

If the cache option is set, then all existing cache files will be kept while draft
mode is on. This allows caching to be used intermitently with draft mode without
requiring that the cache be completely recreated each time. Automatic cleanup of
cached files will resume as soon as draft mode is turned off. (This assumes that the
auxiliary file has not been deleted in the meantime; it contains the cache history
and allows automatic cleanup of unused files.)

This is the opposite of draft; it is equivalent to draft=false. Again, note thatfinal=〈boolean 〉
(default: true) draft and final settings are typically inherited from the document class.

This option uses kpsewhich to locate files that are to be highlighted. Some buildkpsewhich=〈boolean 〉
(default: false) tools such as texi2pdf function by modifying TEXINPUTS; in some cases, users

may customize TEXINPUTS as well. The kpsewhich option allows minted to work
with such configurations.

This option may add a noticeable amount of overhead on some systems, or with
some system configurations.

This option does not make minted work with the -output-directory and
-aux-directory command-line options for LATEX. For those, see the outputdir
package option.

Under Windows, this option currently requires that PowerShell be installed. It
may need to be installed in versions of Windows prior to Windows 7.

minted uses the fancyvrb package behind the scenes for the code typesetting.langlinenos=〈boolean 〉
(default: false) fancyvrb provides an option firstnumber that allows the starting line number of an

environment to be specified. For convenience, there is an option firstnumber=last
that allows line numbering to pick up where it left off. The langlinenos option
makes firstnumber work for each language individually with all minted and \mint
usages. For example, consider the code and output below.

\begin{minted}[linenos]{python}
def f(x):

return x**2
\end{minted}

\begin{minted}[linenos]{ruby}
def func

puts "message"
end
\end{minted}

\begin{minted}[linenos, firstnumber=last]{python}

13

http://www.ctan.org/pkg/ifplatform
http://www.ctan.org/pkg/ifplatform

def g(x):
return 2*x

\end{minted}

1 def f(x):
2 return x**2

1 def func
2 puts "message"
3 end

3 def g(x):
4 return 2*x

Without the langlinenos option, the line numbering in the second Python envi-
ronment would not pick up where the first Python environment left off. Rather, it
would pick up with the Ruby line numbering.

By default, the listing environment is created using the float package. Thenewfloat=〈boolean 〉
(default: false) newfloat option creates the environment using newfloat instead. This provides

better integration with the caption package.

The -output-directory and -aux-directory (MiKTeX) command-line optionsoutputdir=〈directory 〉
(default: 〈none 〉) for LATEX cause problems for minted, because the minted temporary files are saved

in <outputdir>, but minted still looks for them in the document root directory.
There is no way to access the value of the command-line option so that minted
can automatically look in the right place. But it is possible to allow the output
directory to be specified manually as a package option.

The output directory should be specified using an absolute path or a path relative
to the document root directory. Paths should use forward spaces, even under
Windows. Special characters must be escaped, while spaces require quoting and
need the entire 〈directory〉 to be wrapped in curly braces {}. See cachedir above
for examples of escaping and quoting.

To control how LATEX counts the listing floats, you can pass either the sectionsection
or chapter option when loading the minted package.

5.2 Macro option usage

All minted highlighting commands accept the same set of options. Options are
specified as a comma-separated list of key=value pairs. For example, we can
specify that the lines should be numbered:

14

\begin{minted}[linenos=true]{c++}
#include <iostream>
int main() {

std::cout << "Hello "
<< "world"
<< std::endl;

}
\end{minted}

1 #include <iostream>
2 int main() {
3 std::cout << "Hello "
4 << "world"
5 << std::endl;
6 }

An option value of true may also be omitted entirely (including the “=”). To
customize the display of the line numbers further, override the \theFancyVerbLine
command. Consult the fancyvrb documentation for details.

\mint accepts the same options:

\mint[linenos]{perl}|$x=~/foo/| 1 $x=~/foo/

Here’s another example: we want to use the LATEX math mode inside comments:

\begin{minted}[mathescape]{python}
Returns $\sum_{i=1}^{n}i$
def sum_from_one_to(n):

r = range(1, n + 1)
return sum(r)

\end{minted}

Returns
∑n

i=1 i
def sum_from_one_to(n):

r = range(1, n + 1)
return sum(r)

To make your LATEX code more readable you might want to indent the code inside
a minted environment. The option gobble removes these unnecessary whitespace
characters from the output. There is also an autogobble option that detects the
length of this whitespace automatically.

\begin{minted}[gobble=2,
showspaces]{python}
def boring(args = None):

pass
\end{minted}

versus

\begin{minted}[showspaces]{python}
def boring(args = None):

pass
\end{minted}

def␣boring(args␣=␣None):
␣␣␣␣pass

versus

␣␣def␣boring(args␣=␣None):
␣␣␣␣␣␣pass

You may wish to set options for the document as a whole, or for an entire language.\setminted
This is possible via \setminted[〈language〉]{〈key=value,...〉}. Language-specific
options override document-wide options. Individual command and environment

15

options override language-specific options.

You may wish to set separate options for \mintinline, either for the document\setmintedinline
as a whole or for a specific language. This is possible via \setmintedinline.
The syntax is \setmintedinline[〈language〉]{〈key=value,...〉}. Language-specific
options override document-wide options. Individual command options override
language-specific options. All settings specified with \setmintedinline override
those set with \setminted. That is, inline settings always have a higher precedence
than general settings.

5.3 Available options

Following is a full list of available options. For more detailed option descriptions
please refer to the fancyvrb and Pygments documentation.

(boolean) (default: false)autogobble
Remove (gobble) all common leading whitespace from code. Essentially a version
of gobble that automatically determines what should be removed. Good for code
that originally is not indented, but is manually indented after being pasted into a
LATEX document.

...text.
\begin{minted}[autogobble]{python}

def f(x):
return x**2

\end{minted}

...text.

def f(x):
return x**2

(dimension) (default: 〈document default 〉)baselinestretch
Value to use as for baselinestretch inside the listing.

(string) (default: 〈none 〉)breakafter
Break lines after specified characters, not just at spaces, when breaklines=true.
Does not apply to \mintinline.

For example, breakafter=-/ would allow breaks after any hyphens or slashes.
Special characters given to breakafter should be backslash-escaped (usually #, {,
}, %, [,]; the backslash \ may be obtained via \\).

For an alternative, see breakbefore. When breakbefore and breakafter are
used for the same character, breakbeforegroup and breakaftergroup must both
have the same setting.

16

\begin{minted}[breaklines, breakafter=d]{python}
some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOneLine'
\end{minted}

some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCould c

NeverFitOnOneLine'↪→

(boolean) (default: true)breakaftergroup
When breakafter is used, group all adjacent identical characters together, and
only allow a break after the last character. When breakbefore and breakafter
are used for the same character, breakbeforegroup and breakaftergroup must
both have the same setting.

(string) (default: \,\footnotesize\ensuremath{_\rfloor}, c)breakaftersymbolpre
The symbol inserted pre-break for breaks inserted by breakafter.

(string) (default: 〈none 〉)breakaftersymbolpost
The symbol inserted post-break for breaks inserted by breakafter.

(boolean) (default: false)breakanywhere
Break lines anywhere, not just at spaces, when breaklines=true. Does not apply
to \mintinline.

\begin{minted}[breaklines, breakanywhere]{python}
some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOneLine'
\end{minted}

some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeve c

rFitOnOneLine'↪→

(string) (default: \,\footnotesize\ensuremath{_\rfloor}, c)breakanywheresymbolpre
The symbol inserted pre-break for breaks inserted by breakanywhere.

(string) (default: 〈none 〉)breakanywheresymbolpost
The symbol inserted post-break for breaks inserted by breakanywhere.

(boolean) (default: true)breakautoindent
When a line is broken, automatically indent the continuation lines to the indentation
level of the first line. When breakautoindent and breakindent are used together,
the indentations add. This indentation is combined with breaksymbolindentleft
to give the total actual left indentation. Does not apply to \mintinline.

17

(string) (default: 〈none 〉)breakbefore
Break lines before specified characters, not just at spaces, when breaklines=true.
Does not apply to \mintinline.

For example, breakbefore=A would allow breaks before capital A’s. Special
characters given to breakbefore should be backslash-escaped (usually #, {, }, %,
[,]; the backslash \ may be obtained via \\).

For an alternative, see breakafter. When breakbefore and breakafter are used
for the same character, breakbeforegroup and breakaftergroup must both have
the same setting.

\begin{minted}[breaklines, breakbefore=A]{python}
some_string = 'SomeTextThatGoesOnAndOnForSoLongThatItCouldNeverFitOnOneLine'
\end{minted}

some_string = 'SomeTextThatGoesOn c

AndOnForSoLongThatItCouldNeverFitOnOneLine'↪→

(boolean) (default: true)breakbeforegroup
When breakbefore is used, group all adjacent identical characters together, and
only allow a break before the first character. When breakbefore and breakafter
are used for the same character, breakbeforegroup and breakaftergroup must
both have the same setting.

(string) (default: \,\footnotesize\ensuremath{_\rfloor}, c)breakbeforesymbolpre
The symbol inserted pre-break for breaks inserted by breakbefore.

(string) (default: 〈none 〉)breakbeforesymbolpost
The symbol inserted post-break for breaks inserted by breakbefore.

(boolean) (default: false)breakbytoken
Only break lines at locations that are not within tokens; prevent tokens from
being split by line breaks. By default, breaklines causes line breaking at the
space nearest the margin. While this minimizes the number of line breaks that
are necessary, it can be inconvenient if a break occurs in the middle of a string or
similar token.

This is not compatible with draft mode. A complete list of Pygments tokens
is available at http://pygments.org/docs/tokens/. If the breaks provided by
breakbytoken occur in unexpected locations, it may indicate a bug or shortcoming
in the Pygments lexer for the language.

(boolean) (default: false)breakbytokenanywhere
Like breakbytoken, but also allows line breaks between immediately adja-

18

http://pygments.org/docs/tokens/

cent tokens, not just between tokens that are separated by spaces. Using
breakbytokenanywhere with breakanywhere is redundant.

(dimension) (default: 0pt)breakindent
When a line is broken, indent the continuation lines by this amount. When
breakautoindent and breakindent are used together, the indentations add. This
indentation is combined with breaksymbolindentleft to give the total actual left
indentation. Does not apply to \mintinline.

(boolean) (default: false)breaklines
Automatically break long lines in minted environments and \mint commands, and
wrap longer lines in \mintinline.

By default, automatic breaks occur at space characters. Use breakanywhere to en-
able breaking anywhere; use breakbytoken, breakbytokenanywhere, breakbefore,
and breakafter for more fine-tuned breaking. Currently, only breakbytoken
and breakbytokenanywhere work with \mintinline. Using escapeinside to
escape to LATEX and then insert a manual break is also an option. For example,
use escapeinside=, and then insert \\ at the appropriate point. (Note that
escapeinside does not work within strings.)

...text.
\begin{minted}[breaklines]{python}
def f(x):

return 'Some text ' + str(x)
\end{minted}

...text.

def f(x):
return 'Some text ' +

str(x)↪→

Breaking in minted and \mintmay be customized in several ways. To customize the
indentation of broken lines, see breakindent and breakautoindent. To customize
the line continuation symbols, use breaksymbolleft and breaksymbolright.
To customize the separation between the continuation symbols and the code,
use breaksymbolsepleft and breaksymbolsepright. To customize the ex-
tra indentation that is supplied to make room for the break symbols, use
breaksymbolindentleft and breaksymbolindentright. Since only the left-
hand symbol is used by default, it may also be modified using the alias options
breaksymbol, breaksymbolsep, and breaksymbolindent. Note than none of
these options applies to \mintinline, since they are not relevant in the inline
context.

An example using these options to customize the minted environment is shown
below. This uses the \carriagereturn symbol from the dingbat package.

19

\begin{minted}[breaklines,
breakautoindent=false,
breaksymbolleft=\raisebox{0.8ex}{

\small\reflectbox{\carriagereturn}},
breaksymbolindentleft=0pt,
breaksymbolsepleft=0pt,
breaksymbolright=\small\carriagereturn,
breaksymbolindentright=0pt,
breaksymbolsepright=0pt]{python}

def f(x):
return 'Some text ' + str(x) + ' some more text ' +

str(x) + ' even more text that goes on for a
while'

↪→

↪→

\end{minted}

def f(x):
return 'Some text ' + str(x) + ' some more text ' +

str(x) + ' even more text that goes on for a while'
C

C

Automatic line breaks are limited with Pygments styles that use a colored back-
ground behind large chunks of text. This coloring is accomplished with \colorbox,
which cannot break across lines. It may be possible to create an alternative to
\colorbox that supports line breaks, perhaps with TikZ, but the author is unaware
of a satisfactory solution. The only current alternative is to redefine \colorbox so
that it does nothing. For example,

\AtBeginEnvironment{minted}{\renewcommand{\colorbox}[3][]{#3}}

uses the etoolbox package to redefine \colorbox within all minted environments.

Automatic line breaks will not work with showspaces=true unless you use
breakanywhere or breakafter=\space.

(string) (default: breaksymbolleft)breaksymbol
Alias for breaksymbolleft.

(string) (default: \tiny\ensuremath{\hookrightarrow}, ↪→)breaksymbolleft
The symbol used at the beginning (left) of continuation lines when breaklines=true.
To have no symbol, simply set breaksymbolleft to an empty string (“=,” or “={}”).
The symbol is wrapped within curly braces {} when used, so there is no danger of
formatting commands such as \tiny “escaping.”

The \hookrightarrow and \hookleftarrow may be further customized by the
use of the \rotatebox command provided by graphicx. Additional arrow-type

20

symbols that may be useful are available in the dingbat (\carriagereturn) and
mnsymbol (hook and curve arrows) packages, among others.

Does not apply to \mintinline.

(string) (default: 〈none 〉)breaksymbolright
The symbol used at breaks (right) when breaklines=true. Does not appear at
the end of the very last segment of a broken line.

(dimension) (default: breaksymbolindentleft)breaksymbolindent
Alias for breaksymbolindentleft.

(dimension) (default: 〈width of 4 characters in default teletype font 〉)breaksymbolindentleft
The extra left indentation that is provided to make room for breaksymbolleft.
This indentation is only applied when there is a breaksymbolleft.

This may be set to the width of a specific number of (fixed-width) characters by
using an approach such as

\newdimen\temporarydimen
\settowidth{\temporarydimen}{\ttfamily aaaa}

and then using breaksymbolindentleft=\temporarydimen.

Does not apply to \mintinline.

(dimension) (default: 〈width of 4 characters in default teletype font 〉)breaksymbolindentright
The extra right indentation that is provided to make room for breaksymbolright.
This indentation is only applied when there is a breaksymbolright.

(dimension) (default: breaksymbolsepleft)breaksymbolsep
Alias for breaksymbolsepleft

(dimension) (default: 1em)breaksymbolsepleft
The separation between the breaksymbolleft and the adjacent code. Does not
apply to \mintinline.

(dimension) (default: 1em)breaksymbolsepright
The separation between the breaksymbolright and the adjacent code.

(string) (default: 〈none 〉)bgcolor
Background color of the listing. Be aware that this option has several limitations
(described below); see “Framing alternatives” below for more powerful alternatives.

The value of this option must not be a color command. Instead, it must be a color
name, given as a string, of a previously-defined color:

21

\definecolor{bg}{rgb}{0.95,0.95,0.95}
\begin{minted}[bgcolor=bg]{php}
<?php
echo "Hello, $x";

?>
\end{minted}

<?php
echo "Hello, $x";

?>

This option puts minted environments and \mint commands in a snugshade*
environment from the framed package, which supports breaks across pages. (Prior
to minted 2.2, a minipage was used, which prevented page breaks and gave
undesirable spacing from surrounding text.) Be aware that if bgcolor is used with
breaklines=true, and a line break occurs just before a page break, then text may
extend below the colored background in some instances. It is best to use a more
advanced framing package in those cases; see “Framing alternatives” below.

This option puts \mintinline inside a \colorbox, which does not allow line
breaks. If you want to use \setminted to set background colors, and only want
background colors on minted and \mint, you may use \setmintedinline{bgcolor={}}
to turn off the coloring for inline commands.

Framing alternatives

If you want more reliable and advanced options for background colors and framing,
you should consider a more advanced framing package such as mdframed or tcolorbox.
It is easy to add framing to minted commands and environments using the etoolbox
package, which is automatically loaded by minted. For example, using mdframed:

\BeforeBeginEnvironment{minted}{\begin{mdframed}}
\AfterEndEnvironment{minted}{\end{mdframed}}

Some framing packages also provide built-in commands for such purposes. For
example, mdframed provides a \surroundwithmdframed command, which could
be used to add a frame to all minted environments:

\surroundwithmdframed{minted}

tcolorbox even provides a built-in framing environment with minted support. Sim-
ply use \tcbuselibrary{minted} in the preamble, and then put code within a
tcblisting environment:

\begin{tcblisting}{<tcb options>,
minted language=<language>,
minted style=<style>,
minted options={<option list>} }

<code>
\end{tcblisting}

22

tcolorbox provides other commands and environments for fine-tuning listing ap-
pearance and for working with external code files.

(list of strings) (default: highlight XXX, TODO, BUG, and NOTE)codetagify
Highlight special code tags in comments and docstrings.

(boolean) (default: false)curlyquotes
By default, the backtick ` and typewriter single quotation mark ' always appear
literally, instead of becoming the left and right curly single quotation marks ‘’.
This option allows these characters to be replaced by the curly quotation marks
when that is desirable.

(string) (default: 〈system-specific 〉)encoding
Sets the file encoding that Pygments expects. See also outencoding.

(string) (default: 〈none 〉)escapeinside
Escape to LATEX between the two characters specified in (string). All code
between the two characters will be interpreted as LATEX and typeset accordingly.
This allows for additional formatting. The escape characters need not be identical.
Special LATEX characters must be escaped when they are used as the escape
characters (for example, escapeinside=\#\%). Requires Pygments 2.0+.

Escaping does not work inside strings and comments (for comments,
there is texcomments). As of Pygments 2.0.2, this means that escaping
is “fragile” with some lexers. Due to the way that Pygments implements
escapeinside, any “escaped” LATEX code that resembles a string or comment for
the current lexer may break escapeinside. There is a Pygments issue for this
case. Additional details and a limited workaround for some scenarios are available
on the minted GitHub site.

\begin{minted}[escapeinside=||]{py}
def f(x):

y = x|\colorbox{green}{**}|2
return y

\end{minted}

def f(x):
y = x ** 2
return y

Note that when math is used inside escapes, any active characters be-
yond those that are normally active in verbatim can cause problems.
Any package that relies on special active characters in math mode (for exam-
ple, icomma) will produce errors along the lines of TeX capacity exceeded and
\leavevmode\kern\z@. This may be fixed by modifying \@noligs, as described
at http://tex.stackexchange.com/questions/223876.

(integer) (default: 1)firstline
The first line to be shown. All lines before that line are ignored and do not appear
in the output.

23

https://bitbucket.org/birkenfeld/pygments-main/issue/1118
https://github.com/gpoore/minted/issues/70#issuecomment-111729930
http://tex.stackexchange.com/questions/223876

(auto | last | integer) (default: auto = 1)firstnumber
Line number of the first line.

(family name) (default: tt)fontfamily
The font family to use. tt, courier and helvetica are pre-defined.

(series name) (default: auto – the same as the current font)fontseries
The font series to use.

(font size) (default: auto – the same as the current font)fontsize
The size of the font to use, as a size command, e.g. \footnotesize.

(font shape) (default: auto – the same as the current font)fontshape
The font shape to use.

(command) (default: 〈none 〉)formatcom
A format to execute before printing verbatim text.

(none | leftline | topline | bottomline | lines | single) (default: none)frame
The type of frame to put around the source code listing.

(dimension) (default: 0.4pt)framerule
Width of the frame.

(dimension) (default: \fboxsep)framesep
Distance between frame and content.

(boolean) (default: true)funcnamehighlighting
[For PHP only] If true, highlights built-in function names.

(integer) (default: 0)gobble
Remove the first n characters from each input line.

(string) (default: LightCyan)highlightcolor
Set the color used for highlightlines, using a predefined color name from color
or xcolor, or a color defined via \definecolor.

(string) (default: 〈none 〉)highlightlines
This highlights a single line or a range of lines based on line numbers. For example,
highlightlines={1, 3-4}. The line numbers refer to the line numbers that
would appear if linenos=true, etc. They do not refer to original or actual line
numbers before adjustment by firstnumber.

The highlighting color can be customized with highlightcolor.

24

(string) (default: lower)keywordcase
Changes capitalization of keywords. Takes lower, upper, or capitalize.

(string) (default: empty)label
Add a label to the top, the bottom or both of the frames around the code. See the
fancyvrb documentation for more information and examples. Note: This does not
add a \label to the current listing. To achieve that, use a floating environment
(section 4) instead.

(none | topline | bottomline | all) (default: topline, all, or none)labelposition
Position where to print the label (see above; default: topline if one label is
defined, all if two are defined, none else). See the fancyvrb documentation for
more information.

(integer) (default: 〈last line of input 〉)lastline
The last line to be shown.

(boolean) (default: false)linenos
Enables line numbers. In order to customize the display style of line numbers, you
need to redefine the \theFancyVerbLine macro:

\renewcommand{\theFancyVerbLine}{\sffamily
\textcolor[rgb]{0.5,0.5,1.0}{\scriptsize
\oldstylenums{\arabic{FancyVerbLine}}}}

\begin{minted}[linenos,
firstnumber=11]{python}

def all(iterable):
for i in iterable:

if not i:
return False

return True
\end{minted}

11 def all(iterable):
12 for i in iterable:
13 if not i:
14 return False
15 return True

(boolean) (default: false)numberfirstline
Always number the first line, regardless of stepnumber.

(left | right | both | none) (default: none)numbers
Essentially the same as linenos, except the side on which the numbers appear
may be specified.

(boolean) (default: false)mathescape
Enable LATEX math mode inside comments. Usage as in package listings. See the
note under escapeinside regarding math and ligatures.

25

(boolean) (default: true)numberblanklines
Enables or disables numbering of blank lines.

(dimension) (default: 12pt)numbersep
Gap between numbers and start of line.

(boolean) (default: false)obeytabs
Treat tabs as tabs instead of converting them to spaces—that is, expand them to tab
stops determined by tabsize. While this will correctly expand tabs within
leading indentation, usually it will not correctly expand tabs that are
preceded by anything other than spaces or other tabs. It should be
avoided in those case.

(string) (default: 〈system-specific 〉)outencoding
Sets the file encoding that Pygments uses for highlighted output. Overrides any
encoding previously set via encoding.

(boolean) (default: false)python3
[For PythonConsoleLexer only] Specifies whether Python 3 highlighting is applied.

(boolean) (default: false)resetmargins
Resets the left margin inside other environments.

(color command) (default: black)rulecolor
The color of the frame.

(boolean) (default: false)samepage
Forces the whole listing to appear on the same page, even if it doesn’t fit.

(boolean) (default: false)showspaces
Enables visible spaces: visible␣spaces.

(boolean) (default: false)showtabs
Enables visible tabs—only works in combination with obeytabs.

(macro) (default: \textvisiblespace, ␣)space
Redefine the visible space character. Note that this is only used if showspaces=true.

(string) (default: none)spacecolor
Set the color of visible spaces. By default (none), they take the color of their
surroundings.

(boolean) (default: false)startinline
[For PHP only] Specifies that the code starts in PHP mode, i.e., leading <?php is

26

omitted.

(string) (default: 〈default 〉)style
Sets the stylesheet used by Pygments.

(integer) (default: 1)stepnumber
Interval at which line numbers appear.

(boolean) (default: false)stepnumberfromfirst
By default, when line numbering is used with stepnumber 6= 1, only line numbers
that are a multiple of stepnumber are included. This offsets the line numbering
from the first line, so that the first line, and all lines separated from it by a multiple
of stepnumber, are numbered.

(boolean) (default: false)stepnumberoffsetvalues
By default, when line numbering is used with stepnumber 6= 1, only line numbers
that are a multiple of stepnumber are included. Using firstnumber to offset the
numbering will change which lines are numbered and which line gets which number,
but will not change which numbers appear. This option causes firstnumber
to be ignored in determining which line numbers are a multiple of stepnumber.
firstnumber is still used in calculating the actual numbers that appear. As a result,
the line numbers that appear will be a multiple of stepnumber, plus firstnumber
minus 1.

(boolean) (default: false)stripall
Strip all leading and trailing whitespace from the input.

(boolean) (default: true)stripnl
Strip leading and trailing newlines from the input.

(macro) (default: fancyvrb’s \FancyVerbTab, −〉|)tab
Redefine the visible tab character. Note that this is only used if showtabs=true.
\rightarrowfill, −−→, may be a nice alternative.

(string) (default: black)tabcolor
Set the color of visible tabs. If tabcolor=none, tabs take the color of their
surroundings. This is typically undesirable for tabs that indent multiline comments
or strings.

(integer) (default: 8)tabsize
The number of spaces a tab is equivalent to. If obeytabs is not active, tabs will
be converted into this number of spaces. If obeytabs is active, tab stops will be
set this number of space characters apart.

27

(boolean) (default: false)texcl
Enables LATEX code inside comments. Usage as in package listings. See the note
under escapeinside regarding math and ligatures.

(boolean) (default: false)texcomments
Enables LATEX code inside comments. The newer name for texcl. See the note
under escapeinside regarding math and ligatures.

As of Pygments 2.0.2, texcomments fails with multiline C/C++ preprocessor
directives, and may fail in some other circumstances. This is because preprocessor
directives are tokenized as Comment.Preproc, so texcomments causes preprocessor
directives to be treated as literal LATEX code. An issue has been opened at the
Pygments site; additional details are also available on the minted GitHub site.

(dimension) (default: 0)xleftmargin
Indentation to add before the listing.

(dimension) (default: 0)xrightmargin
Indentation to add after the listing.

6 Defining shortcuts

Large documents with a lot of listings will nonetheless use the same source language
and the same set of options for most listings. Always specifying all options is
redundant, a lot to type and makes performing changes hard.

One option is to use \setminted, but even then you must still specify the language
each time.

minted therefore defines a set of commands that lets you define shortcuts for the
highlighting commands. Each shortcut is specific for one programming language.

\newminted defines a new alias for the minted environment:\newminted

\newminted{cpp}{gobble=2,linenos}

\begin{cppcode}
template <typename T>
T id(T value) {

return value;
}

\end{cppcode}

1 template <typename T>
2 T id(T value) {
3 return value;
4 }

If you want to provide extra options on the fly, or override existing default options,
you can do that, too:

28

http://pygments.org/docs/tokens/
https://bitbucket.org/birkenfeld/pygments-main/issue/1086/wrong-processing-of-in-c-c-macros-if-is
https://github.com/gpoore/minted/issues/66

\newminted{cpp}{gobble=2,linenos}

\begin{cppcode*}{linenos=false,
frame=single}

int const answer = 42;
\end{cppcode*}

int const answer = 42;

Notice the star “*” behind the environment name—due to restrictions in fancyvrb’s
handling of options, it is necessary to provide a separate environment that accepts
options, and the options are not optional on the starred version of the environment.

The default name of the environment is 〈language〉code. If this name clashes with
another environment or if you want to choose an own name for another reason,
you may do so by specifying it as the first argument: \newminted[〈environment
name〉]{〈language〉}{〈options〉}.

Like normal minted environments, environments created with \newminted may
be used within other environment definitions. Since the minted environments use
fancyvrb internally, any environment based on them must include the fancyvrb
command \VerbatimEnvironment. This allows fancyvrb to determine the name
of the environment that is being defined, and correctly find its end. It is best to
include this command at the beginning of the definition. For example,

\newminted{cpp}{gobble=2,linenos}
\newenvironment{env}{\VerbatimEnvironment\begin{cppcode}}{\end{cppcode}}

The above macro only defines shortcuts for the minted environment. The main\newmint
reason is that the short command form \mint often needs different options—at
the very least, it will generally not use the gobble option. A shortcut for \mint is
defined using \newmint[〈macro name〉]{〈language〉}{〈options〉}. The arguments
and usage are identical to \newminted. If no 〈macro name〉 is specified, 〈language〉
is used.

\newmint{perl}{showspaces}

\perl/my $foo = $bar;/
my␣$foo␣=␣$bar;

This creates custom versions of \mintinline. The syntax is the same as that\newmintinline
for \newmint: \newmintinline[〈macro name〉]{〈language〉}{〈options〉}. If a
〈macro name〉 is not specified, then the created macro is called \〈language〉inline.

\newmintinline{perl}{showspaces}

X\perlinline/my $foo = $bar;/X
Xmy␣$foo␣=␣$bar;X

This creates custom versions of \inputminted. The syntax is\newmintedfile

\newmintedfile[〈macro name〉]{〈language〉}{〈options〉}

29

If no 〈macro name〉 is given, then the macro is called \〈language〉file.

7 FAQ and Troubleshooting

In some cases, minted may not give the desired result due to other document settings
that it cannot control. Common issues are described below, with workarounds or
solutions. You may also wish to search tex.stackexchange.com or ask a question
there, if you are working with minted in a non-typical context.

• I receive a “Font Warning: Some font shapes were not available”
message, or bold or italic seem to be missing. This due to a limitation
in the font that is currently in use for typesetting code. In some cases, the
default font shapes that LATEX substitutes are perfectly adequate, and the
warning may be ignored. In other cases, the font substitutions may not clearly
indicate bold or italic text, and you will want to switch to a different font.
See The LATEX Font Catalogue’s section on Typewriter Fonts for alternatives.
If you like the default LATEX fonts, the lmodern package is a good place to
start. The beramono and courier packages may also be good options.

• I receive a “Too many open files” error under OS X when using
caching. See the note on OS X under Section 3.1.

• Weird things happen when I use the fancybox package. fancybox
conflicts with fancyvrb, which minted uses internally. When using fancybox,
make sure that it is loaded before minted (or before fancyvrb, if fancyvrb is
not loaded by minted).

• When I use minted with KOMA-Script document classes, I get
warnings about \float@addtolists. minted uses the float package to
produce floated listings, but this conflicts with the way KOMA-Script does
floats. Load the package scrhack to resolve the conflict. Or use minted’s
newfloat package option.

• Tilde characters ~ are raised, almost like superscripts. This is a font
issue. You need a different font encoding, possibly with a different font.
Try \usepackage[T1]{fontenc}, perhaps with \usepackage{lmodern}, or
something similar.

• I’m getting errors with math, something like TeX capacity exceeded
and \leavevmode\kern\z@. This is due to ligatures being disabled within
verbatim content. See the note under escapeinside.

• I’m getting errors with Beamer. Due to how Beamer treats verbatim
content, you may need to use either the fragile or fragile=singleslide
options for frames that contain minted commands and environments.
fragile=singleslide works best, but it disables overlays. fragile works

30

http://tex.stackexchange.com/
http://www.tug.dk/FontCatalogue/typewriterfonts.html

by saving the contents of each frame to a temp file and then reusing them. This
approach allows overlays, but will break if you have the string \end{frame}
at the beginning of a line (for example, in a minted environment). To work
around that, you can indent the content of the environment (so that the
\end{frame} is preceded by one or more spaces) and then use the gobble
or autogobble options to remove the indentation.

• Tabs are eaten by Beamer. This is due to a bug in Beamer’s treatment
of verbatim content. Upgrade Beamer or use the linked patch. Otherwise,
try fragile=singleslide if you don’t need overlays, or consider using
\inputminted or converting the tabs into spaces.

• I’m trying to create several new minted commands/environments,
and want them all to have the same settings. I’m saving the set-
tings in a macro and then using the macro when defining the com-
mands/environments. But it’s failing. This is due to the way that
keyval works (minted uses it to manage options). Arguments are not ex-
panded. See this and this for more information. It is still possible to do what
you want; you just need to expand the options macro before passing it to
the commands that create the new commands/environments. An example is
shown below. The \expandafter is the vital part.

\def\args{linenos,frame=single,fontsize=\footnotesize,style=bw}

\newcommand{\makenewmintedfiles}[1]{%
\newmintedfile[inputlatex]{latex}{#1}%
\newmintedfile[inputc]{c}{#1}%

}

\expandafter\makenewmintedfiles\expandafter{\args}

• I want to use \mintinline in a context that normally doesn’t allow
verbatim content. The \mintinline command will already work in many
places that do not allow normal verbatim commands like \verb, so make
sure to try it first. If it doesn’t work, one of the simplest alternatives is to
save your code in a box, and then use it later. For example,

\newsavebox\mybox
\begin{lrbox}{\mybox}
\mintinline{cpp}{std::cout}
\end{lrbox}

\commandthatdoesnotlikeverbatim{Text \usebox{\mybox}}

• Extended characters do not work inside minted commands and
environments, even when the inputenc package is used. Version 2.0
adds support for extended characters under the pdfTeX engine. But if you
need characters that are not supported by inputenc, you should use the XeTeX
or LuaTeX engines instead.

31

https://bitbucket.org/rivanvx/beamer/issue/310/tab-characters-in-listings-lost-when-using
https://bitbucket.org/rivanvx/beamer/issue/310/tab-characters-in-listings-lost-when-using
http://tex.stackexchange.com/questions/13563/building-keyval-arguments-using-a-macro/13564#13564
http://tex.stackexchange.com/questions/145363/why-does-includegraphics-varone-vartwo-not-compile/145366#145366

• The polyglossia package is doing undesirable things to code. (For
example, adding extra space around colons in French.) You may
need to put your code within \begin{english}...\end{english}. This
may done for all minted environments using etoolbox in the preamble:

\usepackage{etoolbox}
\BeforeBeginEnvironment{minted}{\begin{english}}
\AfterEndEnvironment{minted}{\end{english}}

• Tabs are being turned into the character sequence ^^I. This
happens when you use XeLaTeX. You need to use the -8bit
command-line option so that tabs may be written correctly to tem-
porary files. See http://tex.stackexchange.com/questions/58732/
how-to-output-a-tabulation-into-a-file for more on XeLaTeX’s han-
dling of tab characters.

• The caption package produces an error when \captionof and other
commands are used in combination with minted. Load the caption
package with the option compatibility=false. Or better yet, use minted’s
newfloat package option, which provides better caption compatibility.

• I need a listing environment that supports page breaks. The built-in
listing environment is a standard float; it doesn’t support page breaks. You
will probably want to define a new environment for long floats. For example,

\usepackage{caption}
\newenvironment{longlisting}{\captionsetup{type=listing}}{}

With the caption package, it is best to use minted’s newfloat package option.
See http://tex.stackexchange.com/a/53540/10742 for more on listing
environments with page breaks.

• I want to use a custom script/executable to access Pygments,
rather than pygmentize. Redefine \MintedPygmentize:

\renewcommand{\MintedPygmentize}{...}

• I want to use the command-line option -output-directory, or MiK-
TeX’s -aux-directory, but am getting errors. Use the package option
outputdir to specify the location of the output directory. Unfortunately,
there is no way for minted to detect the output directory automatically.

• I want extended characters in frame labels, but am getting errors.
This can happen with minted <2.0 and Python 2.7, due to a terminal encoding
issue with Pygments. It should work with any version of Python with minted
2.0+, which processes labels internally and does not send them to Python.

32

http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file
http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file
http://tex.stackexchange.com/a/53540/10742
https://bitbucket.org/birkenfeld/pygments-main/issue/801/python-2-fails-to-detect-terminal-encoding
https://bitbucket.org/birkenfeld/pygments-main/issue/801/python-2-fails-to-detect-terminal-encoding

• minted environments have extra vertical space inside tabular. It is
possible to create a custom environment that eliminates the extra space.
However, a general solution that behaves as expected in the presence of
adjacent text remains to be found.

• I’m receiving a warning from lineno.sty that “Command \@parboxrestore
has changed.” This can happen when minted is loaded after csquotes. Try
loading minted first. If you receive this message when you are not using
csquotes, you may want to experiment with the order of loading packages
and might also open an issue.

Acknowledgements

Konrad Rudolph: Special thanks to Philipp Stephani and the rest of the guys from
comp.text.tex and tex.stackexchange.com.

Geoffrey Poore: Thanks to Marco Daniel for the code on tex.stackexchange.com
that inspired automatic line breaking. Thanks to Patrick Vogt for improving TikZ
externalization compatibility.

Version History

v2.4 (2016/07/20)

• Line breaking and all associated options are now completely delegated
to fvextra.

• Fixed a bug from v2.2 that could cause the first command or
environment to vanish when caching=false (related to work on
\MintedPygmentize).

v2.3 (2016/07/14)

• The fvextra package is now required. fvextra extends and patches
fancyvrb, and includes improved versions of fancyvrb extensions that
were formerly in minted.

• As part of fvextra, the upquote package is always loaded. fvextra
brings the new option curlyquotes, which allows curly single quotation
marks instead of the literal backtick and typewriter single quotation
mark produced by upquote. This allows the default upquote behavior
to be disabled when desired.

• Thanks to fvextra, the options breakbefore, breakafter, and
breakanywhere are now compatible with non-ASCII characters under
pdfTeX (#123).

33

https://github.com/gpoore/minted/issues/82
tex.stackexchange.com

• Thanks to fvextra, obeytabs no longer causes lines in multi-line
comments or strings to vanish (#88), and is now compatible with
breaklines (#99). obeytabs will now always give correct results with
tabs used for indentation. However, tab stops are not guaranteed to be
correct for tabs in the midst of text.

• fvextra brings the new options space, spacecolor, tab, and tabcolor
that allow these characters and their colors to be redefined (#98).
The tab may now be redefined to a flexible-width character such as
\rightarrowfill. The visible tab will now always be black by default,
instead of changing colors depending on whether it is part of indentation
for a multiline string or comment.

• fvextra brings the new options highlightcolor and highlightlines,
which allow single lines or ranges of lines to be highlighted based on
line number (#124).

• fvextra brings the new options numberfirstline, stepnumberfromfirst,
and stepnumberoffsetvalues that provide better control over line
numbering when stepnumber is not 1.

• Fixed a bug from v2.2.2 that prevented upquote from working.

v2.2.2 (2016/06/21)

• Fixed a bug introduced in v2.2 that prevented setting the Pygments
style in the preamble. Style definitions are now more compatible with
using \MintedPygmentize to call a custom pygmentize.

v2.2.1 (2016/06/15)

• The shellesc package is loaded before ifplatform and other packages
that might invoke \write18 (#112).

• When caching is enabled, XeTeX uses the new \mdfivesum macro from
TeX Live 2016 to hash cache content, rather than using \ShellEscape
with Python to perform hashing.

v2.2 (2016/06/08)

• All uses of \ShellEscape (\write18) no longer wrap file names and
paths with double quotes. This allows a cache directory to be speci-
fied relative to a user’s home directory, for example, ~/minted_cache.
cachedir and outputdir paths containing spaces will now require ex-
plicit quoting of the parts of the paths that contain spaces, since minted
no longer supplies quoting. See the updated documentation for examples
(#89).

• Added breakbefore, breakbeforegroup, breakbeforesymbolpre, and
breakbeforesymbolpost. These parallel breakafter*. It is possible
to use breakbefore and breakafter for the same character, so long
as breakbeforegroup and breakaftergroup have the same setting
(#117).

34

• Added package options finalizecache and frozencache. These al-
low the cache to be prepared for (finalizecache) and then used
(frozencache) in an environment in which -shell-escape, Python,
and/or Pygments are not available. Note that this only works if minted
content does not need to be modified, and if no settings that depend on
Pygments or Python need to be changed (#113).

• Style names containing hyphens and underscores (paraiso-light,
paraiso-dark, algol_nu) now work (#111).

• The shellesc package is now loaded, when available, for compatibility
with LuaTeX 0.87+ (TeX Live 2016+, etc.). \ShellEscape is now
used everywhere instead of \immediate\write18. If shellesc is not
available, then a \ShellEscape macro is created. When shellesc is
loaded, there is a check for versions before v0.01c to patch a bug in
v0.01b (present in TeX Live 2015) (#112).

• The bgcolor option now uses the snugshade* environment from the
framed package, so bgcolor is now compatible with page breaks. When
bgcolor is in use, immediately preceding text will no longer push the
minted environment into the margin, and there is now adequate spacing
from surrounding text (#121).

• Added missing support for fancyvrb’s labelposition (#102).
• Improved fix for TikZ externalization, thanks to Patrick Vogt (#73).
• Fixed breakautoindent; it was disabled in version 2.1 due to a bug in

breakanywhere.
• Properly fixed handling of \MintedPygmentize (#62).
• Added note on incompatibility of breaklines and obeytabs options.

Trying to use these together will now result in a package error (#99).
Added note on issues with obeytabs and multiline comments (#88).
Due to the various obeytabs issues, the docs now discourage using
obeytabs.

• Added note to FAQ on fancybox and fancyvrb conflict (#87).
• Added note to docs on the need for \VerbatimEnvironment in environ-

ment definitions based on minted environments.

v2.1 (2015/09/09)

• Changing the highlighting style now no longer involves re-highlighing
code. Style may be changed with almost no overhead.

• Improved control of automatic line breaks. New option breakanywhere
allows line breaks anywhere when breaklines=true. The pre-
break and post-break symbols for these types of breaks may be set
with breakanywheresymbolpre and breakanywheresymbolpost (#79).
New option breakafter allows specifying characters after which line
breaks are allowed. Breaks between adjacent, identical characters may

35

be controlled with breakaftergroup. The pre-break and post-break
symbols for these types of breaks may be set with breakaftersymbolpre
and breakaftersymbolpost.

• breakbytoken now only breaks lines between tokens that are sep-
arated by spaces, matching the documentation. The new option
breakbytokenanywhere allows for breaking between tokens that are
immediately adjacent. Fixed a bug in \mintinline that produced a
following linebreak when \mintinline was the first thing in a paragraph
and breakbytoken was true (#77).

• Fixed a bug in draft mode option handling for \inputminted (#75).
• Fixed a bug with \MintedPygmentize when a custom pygmentize was

specified and there was no pygmentize on the default path (#62).
• Added note to docs on caching large numbers of code blocks under OS X

(#78).
• Added discussion of current limitations of texcomments (#66) and

escapeinside (#70).
• PGF/TikZ externalization is automatically detected and supported

(#73).
• The package is now compatible with LATEX files whose names contain

spaces (#85).

v2.0 (2015/01/31)

• Added the compatibility package minted1, which provides the minted
1.7 code. This may be loaded when 1.7 compatibility is required. This
package works with other packages that \RequirePackage{minted}, so
long as it is loaded first.

• Moved all old \changes into changelog.

Development releases for 2.0 (2014–January 2015)

• Caching is now on by default.
• Fixed a bug that prevented compiling under Windows when file names

contained commas.
• Added breaksymbolleft, breaksymbolsepleft, breaksymbolindentleft,

breaksymbolright, breaksymbolsepright, and breaksymbolindentright
options. breaksymbol, breaksymbolsep, and breaksymbolindent are
now aliases for the correspondent *left options.

• Added kpsewhich package option. This uses kpsewhich to locate the
files that are to be highlighted. This provides compatibility with build
tools like texi2pdf that function by modifying TEXINPUTS (#25).

• Fixed a bug that prevented \inputminted from working with outputdir.
• Added informative error messages when Pygments output is missing.

36

• Added final package option (opposite of draft).
• Renamed the default cache directory to _minted-<jobname> (replaced

leading period with underscore). The leading period caused the cache
directory to be hidden on many systems, which was a potential source
of confusion.

• breaklines and breakbytoken now work with \mintinline (#31).
• bgcolor may now be set through \setminted and \setmintedinline.
• When math is enabled via texcomments, mathescape, or escapeinside,

space characters now behave as in normal math by vanishing, instead of
appearing as literal spaces. Math need no longer be specially formatted
to avoid undesired spaces.

• In default value of \listoflistingscaption, capitalized “Listings” so
that capitalization is consistent with default values for other lists (figures,
tables, algorithms, etc.).

• Added newfloat package option that creates the listing environment
using newfloat rather than float, thus providing better compatibility
with the caption package (#12).

• Added support for Pygments option stripall.
• Added breakbytoken option that prevents breaklines from breaking

lines within Pygments tokens.
• \mintinline uses a \colorbox when bgcolor is set, to give more

reasonable behavior (#57).
• For PHP, \mintinline automatically begins with startinline=true

(#23).
• Fixed a bug that threw off line numbering in minted when langlinenos=false

and firstnumber=last. Fixed a bug in \mintinline that threw off sub-
sequent line numbering when langlinenos=false and firstnumber=last.

• Improved behavior of \mint and \mintinline in draft mode.
• The \mint command now has the additional capability to take code

delimited by paired curly braces {}.
• It is now possible to set options only for \mintinline using the new

\setmintedinline command. Inline options override options specified
via \setminted.

• Completely rewrote option handling. fancyvrb options are now handled
on the LATEX side directly, rather than being passed to Pygments and
then returned. This makes caching more efficient, since code is no longer
rehighlighted just because fancyvrb options changed.

• Fixed buffer size error caused by using cache with a very large number
of files (#61).

• Fixed autogobble bug that caused failure under some operating systems.

37

• Added support for escapeinside (requires Pygments 2.0+; #38).
• Fixed issues with XeTeX and caching (#40).
• The upquote package now works correctly with single quotes when

using Pygments 1.6+ (#34).
• Fixed caching incompatibility with Linux and OS X under xelatex (#18

and #42).
• Fixed autogobble incompatibility with Linux and OS X.
• \mintinline and derived commands are now robust, via \newrobustcmd

from etoolbox.
• Unused styles are now cleaned up when caching.
• Fixed a bug that could interfere with caching (#24).
• Added draft package option (#39). This typesets all code using

fancyvrb; Pygments is not used. This trades syntax highlighting for
maximum speed in compiling.

• Added automatic line breaking with breaklines and related options
(#1).

• Fixed a bug with boolean options that needed a False argument to
cooperate with \setminted (#48).

v2.0-alpha3 (2013/12/21)

• Added autogobble option. This sends code through Python’s
textwrap.dedent() to remove common leading whitespace.

• Added package option cachedir. This allows the directory in which
cached content is saved to be specified.

• Added package option outputdir. This allows an output directory
for temporary files to be specified, so that the package can work with
LaTeX’s -output-directory command-line option.

• The kvoptions package is now required. It is needed to process key-
value package options, such as the new cachedir option.

• Many small improvements, including better handling of paths under
Windows and improved key system.

v2.0-alpha2 (2013/08/21)

• \DeleteFile now only deletes files if they do indeed exist. This elimi-
nates warning messages due to missing files.

• Fixed a bug in the definition of \DeleteFile for non-Windows systems.
• Added support for Pygments option stripnl.
• Settings macros that were previously defined globally are now defined lo-

cally, so that \setmintedmay be confined by \begingroup...\endgroup
as expected.

38

• Macro definitions for a given style are now loaded only once per docu-
ment, rather than once per command/environment. This works even
without caching.

• A custom script/executable may now be substituted for pygmentize by
redefining \MintedPygmentize.

v2.0alpha (2013/07/30)

• Added the package option cache. This significantly increases com-
pilation speed by caching old output. For example, compiling the
documentation is around 5x faster.

• New inline command \mintinline. Custom versions can be created
via \newmintinline. The command works inside other commands (for
example, footnotes) in most situations, so long as the percent and hash
characters are avoided.

• The new \setminted command allows options to be specified at the
document and language levels.

• All extended characters (Unicode, etc.) supported by inputenc now
work under the pdfTeX engine. This involved using \detokenize on
everything prior to saving.

• New package option langlinenos allows line numbering to pick up
where it left off for a given language when firstnumber=last.

• New options, including style, encoding, outencoding, codetagify,
keywordcase, texcomments (same as texcl), python3 (for the PythonConsoleLexer),
and numbers.

• \usemintedstyle now takes an optional argument to specify the style
for a particular language, and works anywhere in the document.

• xcolor is only loaded if color isn’t, preventing potential package
clashes.

1.7 (2011/09/17)

• Options for float placement added [2011/09/12]
• Fixed tabsize option [2011/08/30]
• More robust detection of the -shell-escape option [2011/01/21]
• Added the label option [2011/01/04]
• Installation instructions added [2010/03/16]
• Minimal working example added [2010/03/16]
• Added PHP-specific options [2010/03/14]
• Removed unportable flag from Unix shell command [2010/02/16]

1.6 (2010/01/31)

39

• Added font-related options [2010/01/27]
• Windows support added [2010/01/27]
• Added command shortcuts [2010/01/22]
• Simpler versioning scheme [2010/01/22]

0.1.5 (2010/01/13)

• Added fillcolor option [2010/01/10]
• Added float support [2010/01/10]
• Fixed firstnumber option [2010/01/10]
• Removed caption option [2010/01/10]

0.0.4 (2010/01/08)

• Initial version [2010/01/08]

8 Implementation

8.1 Required packages

Load required packages. For compatibility reasons, most old functionality should
be supported with the original set of packages. More recently added packages, such
as etoolbox and xstring, should only be used for new features when possible.
shellesc must be loaded before any packages that invoke \write18, since it is
possible that they haven’t yet been patched to work with LuaTeX 0.87+.

1 \RequirePackage{keyval}
2 \RequirePackage{kvoptions}
3 \RequirePackage{fvextra}
4 \RequirePackage{float}
5 \RequirePackage{ifthen}
6 \RequirePackage{calc}
7 \IfFileExists{shellesc.sty}
8 {\RequirePackage{shellesc}
9 \@ifpackagelater{shellesc}{2016/04/29}

10 {}
11 {\protected\def\ShellEscape{\immediate\write18 }}}
12 {\protected\def\ShellEscape{\immediate\write18 }}
13 \RequirePackage{ifplatform}
14 \RequirePackage{pdftexcmds}
15 \RequirePackage{etoolbox}
16 \RequirePackage{xstring}
17 \RequirePackage{lineno}
18 \RequirePackage{framed}

40

Make sure that either color or xcolor is loaded by the beginning of the document.

19 \AtEndPreamble{%
20 \@ifpackageloaded{color}{}{%
21 \@ifpackageloaded{xcolor}{}{\RequirePackage{xcolor}}}%
22 }

8.2 Package options

\minted@float@within Define an option that controls the section numbering of the listing float.

23 \DeclareVoidOption{chapter}{\def\minted@float@within{chapter}}
24 \DeclareVoidOption{section}{\def\minted@float@within{section}}

newfloat Define an option to use newfloat rather than float to create a floated listing
environment.

25 \DeclareBoolOption{newfloat}

cache Define an option that determines whether highlighted content is cached. We use a
boolean to keep track of its state.

26 \DeclareBoolOption[true]{cache}

\minted@jobname At various points, temporary files and directories will need to be named after
the main .tex file. The typical way to do this is to use \jobname. However,
if the file name contains spaces, then \jobname will contain the name wrapped
in quotes (older versions of MiKTeX replace spaces with asterisks instead, and
XeTeX apparently allows double quotes within file names, in which case names are
wrapped in single quotes). While that is perfectly fine for working with LATEX
internally, it causes problems with \write18, since quotes will end up in unwanted
locations in shell commands. It would be possible to strip the wrapping quotation
marks when they are present, and maintain any spaces in the file name. But it is
simplest to create a “sanitized” version of \jobname in which spaces and asterisks
are replaced by underscores, and double quotes are stripped.

27 \StrSubstitute{\jobname}{ }{_}[\minted@jobname]
28 \StrSubstitute{\minted@jobname}{*}{_}[\minted@jobname]
29 \StrSubstitute{\minted@jobname}{"}{}[\minted@jobname]

\minted@cachedir Set the directory in which cached content is saved. The default uses a minted-
prefix followed by the sanitized \minted@jobname.

30 \newcommand{\minted@cachedir}{\detokenize{_}minted-\minted@jobname}
31 \let\minted@cachedir@windows\minted@cachedir
32 \define@key{minted}{cachedir}{%
33 \@namedef{minted@cachedir}{#1}%
34 \StrSubstitute{\minted@cachedir}{/}{\@backslashchar}[\minted@cachedir@windows]}

41

http://tex.stackexchange.com/a/93829/10742

finalizecache Define an option that switches the naming of cache files from an MD5-based system
to a listing<number> scheme. Compiling with this option is a prerequisite to
turning on frozencache.

35 \DeclareBoolOption{finalizecache}

frozencache Define an option that uses a fixed set of cache files, using listing<number> file
naming with \write18 disabled. This is convenient for working with a document
in an environment in which \write18 support is disabled and minted content does
not need to be modified.

36 \DeclareBoolOption{frozencache}

\minted@outputdir The -output-directory command-line option for LATEX causes problems for
minted, because the minted temporary files are saved in the output directory,
but minted still looks for them in the document root directory. There is no way
to access the value of the command-line option. But it is possible to allow the
output directory to be specified manually as a package option. A trailing slash
is automatically appended to the outputdir, so that it may be directly joined to
cachedir. This may be redundant if the user-supplied value already ends with
a slash, but doubled slashes are ignored under *nix and Windows, so it isn’t a
problem.

37 \let\minted@outputdir\@empty
38 \let\minted@outputdir@windows\@empty
39 \define@key{minted}{outputdir}{%
40 \@namedef{minted@outputdir}{#1/}%
41 \StrSubstitute{\minted@outputdir}{/}%
42 {\@backslashchar}[\minted@outputdir@windows]}

kpsewhich Define an option that invokes kpsewhich to locate the files that are to be
pygmentized. This isn’t done by default to avoid the extra overhead, but can be
useful with some build tools such as texi2pdf that rely on modifying TEXINPUTS.

43 \DeclareBoolOption{kpsewhich}

langlinenos Define an option that makes all minted environments and \mint commands for a
given language share cumulative line numbering (if firstnumber=last).

44 \DeclareBoolOption{langlinenos}

draft Define an option that allows fancyvrb to do all typesetting directly, without using
Pygments. This trades syntax highlighting for speed. Note that in many cases, the
difference in performance between caching and draft mode will be minimal. Also
note that draft settings may be inherited from the document class.

45 \DeclareBoolOption{draft}

42

final Define a final option that is the opposite of draft, since many packages do this.

46 \DeclareComplementaryOption{final}{draft}

Process package options. Proceed with everything that immediately relies upon
them. If PGF/TikZ externalization is in use, switch on draft mode and turn off
cache. Externalization involves compiling the entire document; all parts not related
to the current image are “silently thrown away.” minted needs to cooperate with that
by not writing any temp files or creating any directories. Two checks are done for
externalization. The first, using \tikzifexternalizing, works if externalization
is set before minted is loaded. The second, using \tikzexternalrealjob, works if
externalization is set after minted is loaded.

47 \ProcessKeyvalOptions*
48 \ifthenelse{\boolean{minted@newfloat}}{\RequirePackage{newfloat}}{}
49 \ifcsname tikzifexternalizing\endcsname
50 \tikzifexternalizing{\minted@drafttrue\minted@cachefalse}{}
51 \else
52 \ifcsname tikzexternalrealjob\endcsname
53 \minted@drafttrue
54 \minted@cachefalse
55 \else
56 \fi
57 \fi
58 \ifthenelse{\boolean{minted@finalizecache}}%
59 {\ifthenelse{\boolean{minted@frozencache}}%
60 {\PackageError{minted}%
61 {Options "finalizecache" and "frozencache" are not compatible}%
62 {Options "finalizecache" and "frozencache" are not compatible}}%
63 {}}%
64 {}
65 \ifthenelse{\boolean{minted@cache}}%
66 {\ifthenelse{\boolean{minted@frozencache}}%
67 {}%
68 {\AtEndOfPackage{\ProvideDirectory{\minted@outputdir\minted@cachedir}}}}%
69 {}

8.3 Input, caching, and temp files

\minted@input We need a wrapper for \input. In most cases, \input failure will be due to
attempts to use \inputminted with files that don’t exist, but we also want to give
informative error messages when outputdir is needed or incompatible build tools
are used.

70 \newcommand{\minted@input}[1]{%
71 \IfFileExists{#1}%
72 {\input{#1}}%
73 {\PackageError{minted}{Missing Pygments output; \string\inputminted\space

43

74 was^^Jprobably given a file that does not exist--otherwise, you may need
75 ^^Jthe outputdir package option, or may be using an incompatible build
76 tool\ifwindows,^^Jor may be using the kpsewhich option without having
77 PowerShell installed\fi,^^Jor may be using frozencache with a missing file}%
78 {This could be caused by using -output-directory or -aux-directory
79 ^^Jwithout setting minted’s outputdir, or by using a build tool that
80 ^^Jchanges paths in ways minted cannot detect\ifwindows, or by using the
81 ^^Jkpsewhich option without PowerShell\fi,
82 ^^Jor using frozencache with a missing file.}}%
83 }

\minted@infile Define a default name for files of highlighted content that are brought it. Caching
will redefine this. We start out with the default, non-caching value.

84 \newcommand{\minted@infile}{\minted@jobname.out.pyg}

We need a way to track the cache files that are created, and delete those that
are not in use. This is accomplished by creating a comma-delimited list of cache
files and saving this list to the .aux file so that it may be accessed on subsequent
runs. During subsequent runs, this list is compared against the cache files that
are actually used, and unused files are deleted. Cache file names are created with
MD5 hashes of highlighting settings and file contents, with a .pygtex extension, so
they never contain commas. Thus comma-delimiting the list of file names doesn’t
introduce a potential for errors.

\minted@cachelist This is a list of the current cache files.

85 \newcommand{\minted@cachelist}{}

\minted@addcachefile This adds a file to the list of cache files. It also creates a macro involving the hash,
so that the current usage of the hash can be easily checked by seeing if the macro
exists. The list of cache files must be created with built-in linebreaks, so that when
it is written to the .aux file, it won’t all be on one line and thereby risk buffer
errors.

86 \newcommand{\minted@addcachefile}[1]{%
87 \expandafter\long\expandafter\gdef\expandafter\minted@cachelist\expandafter{%
88 \minted@cachelist,^^J%
89 \space\space#1}%
90 \expandafter\gdef\csname minted@cached@#1\endcsname{}%
91 }

\minted@savecachelist We need to be able to save the list of cache files to the .aux file, so that we can
reload it on the next run.

92 \newcommand{\minted@savecachelist}{%
93 \ifdefempty{\minted@cachelist}{}{%

44

94 \immediate\write\@mainaux{%
95 \string\gdef\string\minted@oldcachelist\string{%
96 \minted@cachelist\string}}%
97 }%
98 }

\minted@cleancache Clean up old cache files that are no longer in use.

99 \newcommand{\minted@cleancache}{%
100 \ifcsname minted@oldcachelist\endcsname
101 \def\do##1{%
102 \ifthenelse{\equal{##1}{}}{}{%
103 \ifcsname minted@cached@##1\endcsname\else
104 \DeleteFile[\minted@outputdir\minted@cachedir]{##1}%
105 \fi
106 }%
107 }%
108 \expandafter\docsvlist\expandafter{\minted@oldcachelist}%
109 \else
110 \fi
111 }

At the end of the document, save the list of cache files and clean the cache. If
in draft mode, don’t clean up the cache and save the old cache file list for next
time. This allows draft mode to be switched on and off without requiring that all
highlighted content be regenerated. The saving and cleaning operations may be
called without conditionals, since their definitions already contain all necessary
checks for their correct operation.

112 \ifthenelse{\boolean{minted@draft}}%
113 {\AtEndDocument{%
114 \ifcsname minted@oldcachelist\endcsname
115 \StrSubstitute{\minted@oldcachelist}{,}{,^^J }[\minted@cachelist]
116 \minted@savecachelist
117 \fi}}%
118 {\ifthenelse{\boolean{minted@frozencache}}%
119 {\AtEndDocument{%
120 \ifcsname minted@oldcachelist\endcsname
121 \StrSubstitute{\minted@oldcachelist}{,}{,^^J }[\minted@cachelist]
122 \minted@savecachelist
123 \fi}}%
124 {\AtEndDocument{%
125 \minted@savecachelist
126 \minted@cleancache}}}%

8.4 OS interaction

We need system-dependent macros for communicating with the “outside world.”

45

\DeleteFile Delete a file. Define conditionally in case an equivalent macro has already been
defined.

127 \ifwindows
128 \providecommand{\DeleteFile}[2][]{%
129 \ifthenelse{\equal{#1}{}}%
130 {\IfFileExists{#2}{\ShellEscape{del #2}}{}}%
131 {\IfFileExists{#1/#2}{%
132 \StrSubstitute{#1}{/}{\@backslashchar}[\minted@windir]
133 \ShellEscape{del \minted@windir\@backslashchar #2}}{}}}
134 \else
135 \providecommand{\DeleteFile}[2][]{%
136 \ifthenelse{\equal{#1}{}}%
137 {\IfFileExists{#2}{\ShellEscape{rm #2}}{}}%
138 {\IfFileExists{#1/#2}{\ShellEscape{rm #1/#2}}{}}}
139 \fi

\ProvideDirectory We need to be able to create a directory, if it doesn’t already exist. This is primarily
for storing cached highlighted content.

140 \ifwindows
141 \newcommand{\ProvideDirectory}[1]{%
142 \StrSubstitute{#1}{/}{\@backslashchar}[\minted@windir]
143 \ShellEscape{if not exist \minted@windir\space mkdir \minted@windir}}
144 \else
145 \newcommand{\ProvideDirectory}[1]{%
146 \ShellEscape{mkdir -p #1}}
147 \fi

\TestAppExists Determine whether a given application exists.

Usage is a bit roundabout, but has been retained for backward compatibil-
ity. At some point, it may be worth replacing this with something using
\@@input"|<command>". That would require MiKTeX users to --enable-pipes,
however, which would make things a little more complicated. If Windows XP
compatibility is ever no longer required, the where command could be used instead
of the approach for Windows.

To test whether an application exists, use the following code:

\TestAppExists{appname}
\ifthenelse{\boolean{AppExists}}{app exists}{app doesn't exist}

148 \newboolean{AppExists}
149 \newread\minted@appexistsfile
150 \newcommand{\TestAppExists}[1]{
151 \ifwindows

46

On Windows, we need to use path expansion and write the result to a file. If the
application doesn’t exist, the file will be empty (except for a newline); otherwise,
it will contain the full path of the application.

152 \DeleteFile{\minted@jobname.aex}
153 \ShellEscape{for \string^\@percentchar i in (#1.exe #1.bat #1.cmd)
154 do set > \minted@jobname.aex <nul: /p
155 x=\string^\@percentchar \string~$PATH:i>> \minted@jobname.aex}
156 %$ <- balance syntax highlighting
157 \immediate\openin\minted@appexistsfile\minted@jobname.aex
158 \expandafter\def\expandafter\@tmp@cr\expandafter{\the\endlinechar}
159 \endlinechar=-1\relax
160 \readline\minted@appexistsfile to \minted@apppathifexists
161 \endlinechar=\@tmp@cr
162 \ifthenelse{\equal{\minted@apppathifexists}{}}
163 {\AppExistsfalse}
164 {\AppExiststrue}
165 \immediate\closein\minted@appexistsfile
166 \DeleteFile{\minted@jobname.aex}
167 \else

On Unix-like systems, we do a straightforward which test and create a file upon
success, whose existence we can then check.

168 \ShellEscape{which #1 && touch \minted@jobname.aex}
169 \IfFileExists{\minted@jobname.aex}
170 {\AppExiststrue
171 \DeleteFile{\minted@jobname.aex}}
172 {\AppExistsfalse}
173 \fi
174 }

8.5 Option processing

Option processing is somewhat involved, because we want to be able to define
options at various levels of hierarchy: individual command/environment, language,
global (document). And once those options are defined, we need to go through
the hierarchy in a defined order of precedence to determine which option to apply.
As if that wasn’t complicated enough, some options need to be sent to Pygments,
some need to be sent to fancyvrb, and some need to be processed within minted
itself.

To begin with, we need macros for storing lists of options that will later be passed
via the command line to Pygments (optlistcl). These are defined at the global
(cl@g), language (cl@lang), and command or environment (cl@cmd) levels, so that
settings can be specified at various levels of hierarchy. The language macro is
actually a placeholder. The current language will be tracked using \minted@lang.
Each individual language will create a \minted@optlistcl@lang〈language〉 macro.

47

\minted@optlistcl@lang may be \let to this macro as convenient; otherwise,
the general language macro merely serves as a placeholder.

The global- and language-level lists also have an inline (i) variant. This allows
different settings to be applied in inline settings. An inline variant is not needed at
the command/environment level, since at that level settings would not be present
unless they were supposed to be applied.

\minted@optlistcl@g

175 \newcommand{\minted@optlistcl@g}{}

\minted@optlistcl@g@i

176 \newcommand{\minted@optlistcl@g@i}{}

\minted@lang

177 \let\minted@lang\@empty

\minted@optlistcl@lang

178 \newcommand{\minted@optlistcl@lang}{}

\minted@optlistcl@lang@i

179 \newcommand{\minted@optlistcl@lang@i}{}

\minted@optlistcl@cmd

180 \newcommand{\minted@optlistcl@cmd}{}

We also need macros for storing lists of options that will later be passed to fancyvrb
(optlistfv). As before, these exist at the global (fv@g), language (fv@lang), and
command or environment (fv@cmd) levels. Pygments accepts fancyvrb options,
but in almost all cases, these options may be applied via \fvset rather than via
running Pygments. This is significantly more efficient when caching is turned on,
since it allows formatting changes to be applied without having to re-highlight the
code.

\minted@optlistfv@g

181 \newcommand{\minted@optlistfv@g}{}

\minted@optlistfv@g@i

182 \newcommand{\minted@optlistfv@g@i}{}

48

\minted@optlistfv@lang

183 \newcommand{\minted@optlistfv@lang}{}

\minted@optlistfv@lang@i

184 \newcommand{\minted@optlistfv@lang@i}{}

\minted@optlistfv@cmd

185 \newcommand{\minted@optlistfv@cmd}{}

\minted@configlang We need a way to check whether a language has had all its option list macros
created. This generally occurs in a context where \minted@lang needs to be set.
So we create a macro that does both at once. If the language list macros do not
exist, we create them globally to simplify future operations.

186 \newcommand{\minted@configlang}[1]{%
187 \def\minted@lang{#1}%
188 \ifcsname minted@optlistcl@lang\minted@lang\endcsname\else
189 \expandafter\gdef\csname minted@optlistcl@lang\minted@lang\endcsname{}%
190 \fi
191 \ifcsname minted@optlistcl@lang\minted@lang @i\endcsname\else
192 \expandafter\gdef\csname minted@optlistcl@lang\minted@lang @i\endcsname{}%
193 \fi
194 \ifcsname minted@optlistfv@lang\minted@lang\endcsname\else
195 \expandafter\gdef\csname minted@optlistfv@lang\minted@lang\endcsname{}%
196 \fi
197 \ifcsname minted@optlistfv@lang\minted@lang @i\endcsname\else
198 \expandafter\gdef\csname minted@optlistfv@lang\minted@lang @i\endcsname{}%
199 \fi
200 }

We need a way to define options in bulk at the global, language, and command
levels. How this is done will depend on the type of option. The keys created are
grouped by level: minted@opt@g, minted@opt@lang, and minted@opt@cmd, plus
inline variants. The language-level key groupings use \minted@lang internally, so
we don’t need to duplicate the internals for different languages. The key groupings
are independent of whether a given option relates to Pygments, fancyvrb, etc.
Organization by level is the only thing that is important here, since keys are
applied in a hierarchical fashion. Key values are stored in macros of the form
\minted@opt@〈level〉:〈key〉, so that they may be retrieved later. In practice, these
key macros will generally not be used directly (hence the colon in the name).
Rather, the hierarchy of macros will be traversed until an existing macro is found.

\minted@def@optcl Define a generic option that will be passed to the command line. Options are given
in a {key}{value} format that is transformed into key=value and then passed to

49

pygmentize. This allows value to be easily stored in a separate macro for later
access. This is useful, for example, in separately accessing the value of encoding
for performing autogobble.

If a key option is specified without =value, the default is assumed. Options are
automatically created at all levels.

Options are added to the option lists in such a way that they will be detokenized.
This is necessary since they will ultimately be used in \write18.

201 \newcommand{\minted@addto@optlistcl}[2]{%
202 \expandafter\def\expandafter#1\expandafter{#1%
203 \detokenize{#2}\space}}
204 \newcommand{\minted@addto@optlistcl@lang}[2]{%
205 \expandafter\let\expandafter\minted@tmp\csname #1\endcsname
206 \expandafter\def\expandafter\minted@tmp\expandafter{\minted@tmp%
207 \detokenize{#2}\space}%
208 \expandafter\let\csname #1\endcsname\minted@tmp}
209 \newcommand{\minted@def@optcl}[4][]{%
210 \ifthenelse{\equal{#1}{}}%
211 {\define@key{minted@opt@g}{#2}{%
212 \minted@addto@optlistcl{\minted@optlistcl@g}{#3=#4}%
213 \@namedef{minted@opt@g:#2}{#4}}%
214 \define@key{minted@opt@g@i}{#2}{%
215 \minted@addto@optlistcl{\minted@optlistcl@g@i}{#3=#4}%
216 \@namedef{minted@opt@g@i:#2}{#4}}%
217 \define@key{minted@opt@lang}{#2}{%
218 \minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang}{#3=#4}%
219 \@namedef{minted@opt@lang\minted@lang:#2}{#4}}%
220 \define@key{minted@opt@lang@i}{#2}{%
221 \minted@addto@optlistcl@lang{%
222 minted@optlistcl@lang\minted@lang @i}{#3=#4}%
223 \@namedef{minted@opt@lang\minted@lang @i:#2}{#4}}%
224 \define@key{minted@opt@cmd}{#2}{%
225 \minted@addto@optlistcl{\minted@optlistcl@cmd}{#3=#4}%
226 \@namedef{minted@opt@cmd:#2}{#4}}}%
227 {\define@key{minted@opt@g}{#2}[#1]{%
228 \minted@addto@optlistcl{\minted@optlistcl@g}{#3=#4}%
229 \@namedef{minted@opt@g:#2}{#4}}%
230 \define@key{minted@opt@g@i}{#2}[#1]{%
231 \minted@addto@optlistcl{\minted@optlistcl@g@i}{#3=#4}%
232 \@namedef{minted@opt@g@i:#2}{#4}}%
233 \define@key{minted@opt@lang}{#2}[#1]{%
234 \minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang}{#3=#4}%
235 \@namedef{minted@opt@lang\minted@lang:#2}{#4}}%
236 \define@key{minted@opt@lang@i}{#2}[#1]{%
237 \minted@addto@optlistcl@lang{%
238 minted@optlistcl@lang\minted@lang @i}{#3=#4}%
239 \@namedef{minted@opt@lang\minted@lang @i:#2}{#4}}%
240 \define@key{minted@opt@cmd}{#2}[#1]{%

50

241 \minted@addto@optlistcl{\minted@optlistcl@cmd}{#3=#4}%
242 \@namedef{minted@opt@cmd:#2}{#4}}}%
243 }

This covers the typical options that must be passed to Pygments. But some,
particularly escapeinside, need more work. Since their arguments may contain
escaped characters, expansion rather than detokenization is needed. Getting
expansion to work as desired in a \write18 context requires the redefinition of
some characters.

\minted@escchars We need to define versions of common escaped characters that will work correctly
under expansion for use in \write18.

244 \edef\minted@hashchar{\string#}
245 \edef\minted@dollarchar{\string$}
246 \edef\minted@ampchar{\string&}
247 \edef\minted@underscorechar{\string_}
248 \edef\minted@tildechar{\string~}
249 \edef\minted@leftsquarebracket{\string[}
250 \edef\minted@rightsquarebracket{\string]}
251 \newcommand{\minted@escchars}{%
252 \let\#\minted@hashchar
253 \let\%\@percentchar
254 \let\{\@charlb
255 \let\}\@charrb
256 \let\$\minted@dollarchar
257 \let\&\minted@ampchar
258 \let_\minted@underscorechar
259 \let\\\@backslashchar
260 \let~\minted@tildechar
261 \let\~\minted@tildechar
262 \let\[\minted@leftsquarebracket
263 \let\]\minted@rightsquarebracket
264 } %$ <- highlighting

\minted@def@optcl@e Now to define options that are expanded.

265 \newcommand{\minted@addto@optlistcl@e}[2]{%
266 \begingroup
267 \minted@escchars
268 \xdef\minted@xtmp{#2}%
269 \endgroup
270 \expandafter\minted@addto@optlistcl@e@i\expandafter{\minted@xtmp}{#1}}
271 \def\minted@addto@optlistcl@e@i#1#2{%
272 \expandafter\def\expandafter#2\expandafter{#2#1\space}}
273 \newcommand{\minted@addto@optlistcl@lang@e}[2]{%
274 \begingroup
275 \minted@escchars
276 \xdef\minted@xtmp{#2}%

51

277 \endgroup
278 \expandafter\minted@addto@optlistcl@lang@e@i\expandafter{\minted@xtmp}{#1}}
279 \def\minted@addto@optlistcl@lang@e@i#1#2{%
280 \expandafter\let\expandafter\minted@tmp\csname #2\endcsname
281 \expandafter\def\expandafter\minted@tmp\expandafter{\minted@tmp#1\space}%
282 \expandafter\let\csname #2\endcsname\minted@tmp}
283 \newcommand{\minted@def@optcl@e}[4][]{%
284 \ifthenelse{\equal{#1}{}}%
285 {\define@key{minted@opt@g}{#2}{%
286 \minted@addto@optlistcl@e{\minted@optlistcl@g}{#3=#4}%
287 \@namedef{minted@opt@g:#2}{#4}}%
288 \define@key{minted@opt@g@i}{#2}{%
289 \minted@addto@optlistcl@e{\minted@optlistcl@g@i}{#3=#4}%
290 \@namedef{minted@opt@g@i:#2}{#4}}%
291 \define@key{minted@opt@lang}{#2}{%
292 \minted@addto@optlistcl@lang@e{minted@optlistcl@lang\minted@lang}{#3=#4}%
293 \@namedef{minted@opt@lang\minted@lang:#2}{#4}}%
294 \define@key{minted@opt@lang@i}{#2}{%
295 \minted@addto@optlistcl@lang@e{%
296 minted@optlistcl@lang\minted@lang @i}{#3=#4}%
297 \@namedef{minted@opt@lang\minted@lang @i:#2}{#4}}%
298 \define@key{minted@opt@cmd}{#2}{%
299 \minted@addto@optlistcl@e{\minted@optlistcl@cmd}{#3=#4}%
300 \@namedef{minted@opt@cmd:#2}{#4}}}%
301 {\define@key{minted@opt@g}{#2}[#1]{%
302 \minted@addto@optlistcl@e{\minted@optlistcl@g}{#3=#4}%
303 \@namedef{minted@opt@g:#2}{#4}}%
304 \define@key{minted@opt@g@i}{#2}[#1]{%
305 \minted@addto@optlistcl@e{\minted@optlistcl@g@i}{#3=#4}%
306 \@namedef{minted@opt@g@i:#2}{#4}}%
307 \define@key{minted@opt@lang}{#2}[#1]{%
308 \minted@addto@optlistcl@lang@e{minted@optlistcl@lang\minted@lang}{#3=#4}%
309 \@namedef{minted@opt@lang\minted@lang:#2}{#4}}%
310 \define@key{minted@opt@lang@i}{#2}[#1]{%
311 \minted@addto@optlistcl@lang@e{%
312 minted@optlistcl@lang\minted@lang @i}{#3=#4}%
313 \@namedef{minted@opt@lang\minted@lang @i:#2}{#4}}%
314 \define@key{minted@opt@cmd}{#2}[#1]{%
315 \minted@addto@optlistcl@e{\minted@optlistcl@cmd}{#3=#4}%
316 \@namedef{minted@opt@cmd:#2}{#4}}}%
317 }

\minted@def@optcl@switch Define a switch or boolean option that is passed to Pygments, which is true when
no value is specified.

318 \newcommand{\minted@def@optcl@switch}[2]{%
319 \define@booleankey{minted@opt@g}{#1}%
320 {\minted@addto@optlistcl{\minted@optlistcl@g}{#2=True}%
321 \@namedef{minted@opt@g:#1}{true}}
322 {\minted@addto@optlistcl{\minted@optlistcl@g}{#2=False}%

52

323 \@namedef{minted@opt@g:#1}{false}}
324 \define@booleankey{minted@opt@g@i}{#1}%
325 {\minted@addto@optlistcl{\minted@optlistcl@g@i}{#2=True}%
326 \@namedef{minted@opt@g@i:#1}{true}}
327 {\minted@addto@optlistcl{\minted@optlistcl@g@i}{#2=False}%
328 \@namedef{minted@opt@g@i:#1}{false}}
329 \define@booleankey{minted@opt@lang}{#1}%
330 {\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang}{#2=True}%
331 \@namedef{minted@opt@lang\minted@lang:#1}{true}}
332 {\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang}{#2=False}%
333 \@namedef{minted@opt@lang\minted@lang:#1}{false}}
334 \define@booleankey{minted@opt@lang@i}{#1}%
335 {\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang @i}{#2=True}%
336 \@namedef{minted@opt@lang\minted@lang @i:#1}{true}}
337 {\minted@addto@optlistcl@lang{minted@optlistcl@lang\minted@lang @i}{#2=False}%
338 \@namedef{minted@opt@lang\minted@lang @i:#1}{false}}
339 \define@booleankey{minted@opt@cmd}{#1}%
340 {\minted@addto@optlistcl{\minted@optlistcl@cmd}{#2=True}%
341 \@namedef{minted@opt@cmd:#1}{true}}
342 {\minted@addto@optlistcl{\minted@optlistcl@cmd}{#2=False}%
343 \@namedef{minted@opt@cmd:#1}{false}}
344 }

Now that all the machinery for Pygments options is in place, we can move on to
fancyvrb options.

\minted@def@optfv Define fancyvrb options. The #1={##1} is needed because any braces enclosing the
argument (##1) will be stripped during the initial capture, and they need to be
reinserted before fancyvrb gets the argument and sends it through another keyval
processing step. If there were no braces initially, adding them here doesn’t hurt,
since they are just stripped off again during processing.

345 \newcommand{\minted@def@optfv}[1]{%
346 \define@key{minted@opt@g}{#1}{%
347 \expandafter\def\expandafter\minted@optlistfv@g\expandafter{%
348 \minted@optlistfv@g#1={##1},}%
349 \@namedef{minted@opt@g:#1}{##1}}
350 \define@key{minted@opt@g@i}{#1}{%
351 \expandafter\def\expandafter\minted@optlistfv@g@i\expandafter{%
352 \minted@optlistfv@g@i#1={##1},}%
353 \@namedef{minted@opt@g@i:#1}{##1}}
354 \define@key{minted@opt@lang}{#1}{%
355 \expandafter\let\expandafter\minted@tmp%
356 \csname minted@optlistfv@lang\minted@lang\endcsname
357 \expandafter\def\expandafter\minted@tmp\expandafter{%
358 \minted@tmp#1={##1},}%
359 \expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname%
360 \minted@tmp
361 \@namedef{minted@opt@lang\minted@lang:#1}{##1}}

53

362 \define@key{minted@opt@lang@i}{#1}{%
363 \expandafter\let\expandafter\minted@tmp%
364 \csname minted@optlistfv@lang\minted@lang @i\endcsname
365 \expandafter\def\expandafter\minted@tmp\expandafter{%
366 \minted@tmp#1={##1},}%
367 \expandafter\let\csname minted@optlistfv@lang\minted@lang @i\endcsname%
368 \minted@tmp
369 \@namedef{minted@opt@lang\minted@lang @i:#1}{##1}}
370 \define@key{minted@opt@cmd}{#1}{%
371 \expandafter\def\expandafter\minted@optlistfv@cmd\expandafter{%
372 \minted@optlistfv@cmd#1={##1},}%
373 \@namedef{minted@opt@cmd:#1}{##1}}
374 }

\minted@def@optfv@switch Define fancyvrb boolean options.

375 \newcommand{\minted@def@optfv@switch}[1]{%
376 \define@booleankey{minted@opt@g}{#1}%
377 {\expandafter\def\expandafter\minted@optlistfv@g\expandafter{%
378 \minted@optlistfv@g#1=true,}%
379 \@namedef{minted@opt@g:#1}{true}}%
380 {\expandafter\def\expandafter\minted@optlistfv@g\expandafter{%
381 \minted@optlistfv@g#1=false,}%
382 \@namedef{minted@opt@g:#1}{false}}%
383 \define@booleankey{minted@opt@g@i}{#1}%
384 {\expandafter\def\expandafter\minted@optlistfv@g@i\expandafter{%
385 \minted@optlistfv@g@i#1=true,}%
386 \@namedef{minted@opt@g@i:#1}{true}}%
387 {\expandafter\def\expandafter\minted@optlistfv@g@i\expandafter{%
388 \minted@optlistfv@g@i#1=false,}%
389 \@namedef{minted@opt@g@i:#1}{false}}%
390 \define@booleankey{minted@opt@lang}{#1}%
391 {\expandafter\let\expandafter\minted@tmp%
392 \csname minted@optlistfv@lang\minted@lang\endcsname
393 \expandafter\def\expandafter\minted@tmp\expandafter{%
394 \minted@tmp#1=true,}%
395 \expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname%
396 \minted@tmp
397 \@namedef{minted@opt@lang\minted@lang:#1}{true}}%
398 {\expandafter\let\expandafter\minted@tmp%
399 \csname minted@optlistfv@lang\minted@lang\endcsname
400 \expandafter\def\expandafter\minted@tmp\expandafter{%
401 \minted@tmp#1=false,}%
402 \expandafter\let\csname minted@optlistfv@lang\minted@lang\endcsname%
403 \minted@tmp
404 \@namedef{minted@opt@lang\minted@lang:#1}{false}}%
405 \define@booleankey{minted@opt@lang@i}{#1}%
406 {\expandafter\let\expandafter\minted@tmp%
407 \csname minted@optlistfv@lang\minted@lang @i\endcsname
408 \expandafter\def\expandafter\minted@tmp\expandafter{%

54

409 \minted@tmp#1=true,}%
410 \expandafter\let\csname minted@optlistfv@lang\minted@lang @i\endcsname%
411 \minted@tmp
412 \@namedef{minted@opt@lang\minted@lang @i:#1}{true}}%
413 {\expandafter\let\expandafter\minted@tmp%
414 \csname minted@optlistfv@lang\minted@lang @i\endcsname
415 \expandafter\def\expandafter\minted@tmp\expandafter{%
416 \minted@tmp#1=false,}%
417 \expandafter\let\csname minted@optlistfv@lang\minted@lang @i\endcsname%
418 \minted@tmp
419 \@namedef{minted@opt@lang\minted@lang @i:#1}{false}}%
420 \define@booleankey{minted@opt@cmd}{#1}%
421 {\expandafter\def\expandafter\minted@optlistfv@cmd\expandafter{%
422 \minted@optlistfv@cmd#1=true,}%
423 \@namedef{minted@opt@cmd:#1}{true}}%
424 {\expandafter\def\expandafter\minted@optlistfv@cmd\expandafter{%
425 \minted@optlistfv@cmd#1=false,}%
426 \@namedef{minted@opt@cmd:#1}{false}}%
427 }

minted@isinline In resolving value precedence when actually using values, we need a way to
determine whether we are in an inline context. This is accomplished via a boolean
that is set at the beginning of inline commands.

428 \newboolean{minted@isinline}

\minted@fvset We will need a way to actually use the lists of stored fancyvrb options later on.

429 \newcommand{\minted@fvset}{%
430 \expandafter\fvset\expandafter{\minted@optlistfv@g}%
431 \expandafter\let\expandafter\minted@tmp%
432 \csname minted@optlistfv@lang\minted@lang\endcsname
433 \expandafter\fvset\expandafter{\minted@tmp}%
434 \ifthenelse{\boolean{minted@isinline}}%
435 {\expandafter\fvset\expandafter{\minted@optlistfv@g@i}%
436 \expandafter\let\expandafter\minted@tmp%
437 \csname minted@optlistfv@lang\minted@lang @i\endcsname
438 \expandafter\fvset\expandafter{\minted@tmp}}%
439 {}%
440 \expandafter\fvset\expandafter{\minted@optlistfv@cmd}%
441 }

We need a way to define minted-specific options at multiple levels of hierarchy, as
well as a way to retrieve these options. As with previous types of options, values
are stored in macros of the form \minted@opt@〈level〉:〈key〉, since they are not
meant to be accessed directly.

The order of precedence is cmd, lang@i, g@i, lang, g. A value specified at the
command or environment level should override other settings. In its absence, a

55

value specified for an inline command should override other settings, if we are
indeed in an inline context. Otherwise, language settings take precedence over
global settings.

Before actually creating the option-definition macro, we need a few helper macros.

\minted@def@opt Finally, on to the actual option definitions for minted-specific options.

Usage: \minted@def@opt[〈initial global value〉]{〈key name〉}

442 \newcommand{\minted@def@opt}[2][]{%
443 \define@key{minted@opt@g}{#2}{%
444 \@namedef{minted@opt@g:#2}{##1}}
445 \define@key{minted@opt@g@i}{#2}{%
446 \@namedef{minted@opt@g@i:#2}{##1}}
447 \define@key{minted@opt@lang}{#2}{%
448 \@namedef{minted@opt@lang\minted@lang:#2}{##1}}
449 \define@key{minted@opt@lang@i}{#2}{%
450 \@namedef{minted@opt@lang\minted@lang @i:#2}{##1}}
451 \define@key{minted@opt@cmd}{#2}{%
452 \@namedef{minted@opt@cmd:#2}{##1}}
453 \ifstrempty{#1}{}{\@namedef{minted@opt@g:#2}{#1}}%
454 }

\minted@checkstyle Make sure that style macros exist.

We have to do some tricks with \endlinechar to prevent \input from inserting
unwanted whitespace. That is primarily for inline commands, where it would
introduce a line break. There is also the very unorthodox \let\def\gdef to
make sure that macros are defined globally. The catcodes for - and _ must be
changed during macro definition to accomodate style names like paraiso-light,
paraiso-dark, and algol_nu.

If a style is not given, then revert to the default style, but create macros with
prefix PYG, and create default-pyg-prefix.pygstyle if caching is on. This allows
a graceful fallback in the event that style is empty. It is also purposefully used to
create a complete set of macros with prefix PYG, so that the symbol macros may
be used, as described next.

The typical style macros created by \minted@checkstyle, which are of the form
\PYG<style>, are used indirectly. All code is highlighted with commandprefix=PYG,
so that it uses \PYG. Then \PYG is \let to \PYG<style> as appropriate. This
way, code need not be highlighted again when the style is changed. This has
the disadvantage that none of the \PYG<symbol> macros will be defined; rather,
only \PYG<style><symbol> macros will be defined. It would be possible to \let
\PYG<symbol> to \PYG<style><symbol>, but it is simpler to define a complete set
of symbol macros using the PYG prefix, so that all symbol macros will be defined
by default.6

6It would be possible to hard-code the symbol macros in minted itself, but that would have

56

Whenever \minted@checkstyle is invoked with a named style and style macros
need to be created, there is a check to see if the PYG prefix macros have been
created, and they are generated if they do not yet exist. This is important when
\MintedPygmentize is used to call a custom pygmentize; we want to wait as late
as possible to use pygmentize, so we don’t want to generate the \PYG macros until
the last possible moment. When the \PYG macros are actually created, the single
quote macro is patched after loading.

It isn’t necessary to set the initial style to default, because the current style is
always obtained via \minted@get@opt{style}{default}, so default is always
the fallback value and need not be set explicitly. \minted@checkstyle is used in
each command/environment, so that using pygmentize can be delayed as long as
possible.

455 \newcommand{\minted@checkstyle}[1]{%
456 \ifcsname minted@styleloaded@\ifstrempty{#1}{default-pyg-prefix}{#1}\endcsname\else
457 \ifstrempty{#1}{}{\ifcsname PYG\endcsname\else\minted@checkstyle{}\fi}%
458 \expandafter\gdef%
459 \csname minted@styleloaded@\ifstrempty{#1}{default-pyg-prefix}{#1}\endcsname{}%
460 \ifthenelse{\boolean{minted@cache}}%
461 {\IfFileExists
462 {\minted@outputdir\minted@cachedir/\ifstrempty{#1}{default-pyg-prefix}{#1}.pygstyle}%
463 {}%
464 {%
465 \ifthenelse{\boolean{minted@frozencache}}%
466 {\PackageError{minted}%
467 {Missing style definition for #1 with frozencache}%
468 {Missing style definition for #1 with frozencache}}%
469 {\ifwindows
470 \ShellEscape{%
471 \MintedPygmentize\space -S \ifstrempty{#1}{default}{#1} -f latex
472 -P commandprefix=PYG#1
473 > \minted@outputdir@windows\minted@cachedir@windows\@backslashchar%
474 \ifstrempty{#1}{default-pyg-prefix}{#1}.pygstyle}%
475 \else
476 \ShellEscape{%
477 \MintedPygmentize\space -S \ifstrempty{#1}{default}{#1} -f latex
478 -P commandprefix=PYG#1
479 > \minted@outputdir\minted@cachedir/%
480 \ifstrempty{#1}{default-pyg-prefix}{#1}.pygstyle}%
481 \fi}%
482 }%
483 \begingroup
484 \let\def\gdef
485 \catcode‘_=11

the disadvantage of tying minted more closely to a particular version of Pygments. Similarly,
\leting symbol macros assumes a complete, fixed list of symbol macros. The current approach is
harder to break than these alternatives; the worst-case scenario should be needing to purge the
cache, rather than dealing with an undefined macro.

57

486 \catcode‘\-=11
487 \endlinechar=-1\relax
488 \minted@input{%
489 \minted@outputdir\minted@cachedir/\ifstrempty{#1}{default-pyg-prefix}{#1}.pygstyle}%
490 \endgroup
491 \minted@addcachefile{\ifstrempty{#1}{default-pyg-prefix}{#1}.pygstyle}}%
492 {%
493 \ifwindows
494 \ShellEscape{%
495 \MintedPygmentize\space -S \ifstrempty{#1}{default}{#1} -f latex
496 -P commandprefix=PYG#1 > \minted@outputdir@windows\minted@jobname.out.pyg}%
497 \else
498 \ShellEscape{%
499 \MintedPygmentize\space -S \ifstrempty{#1}{default}{#1} -f latex
500 -P commandprefix=PYG#1 > \minted@outputdir\minted@jobname.out.pyg}%
501 \fi
502 \begingroup
503 \let\def\gdef
504 \catcode‘_=11
505 \catcode‘\-=11
506 \endlinechar=-1\relax
507 \minted@input{\minted@outputdir\minted@jobname.out.pyg}%
508 \endgroup}%
509 \ifstrempty{#1}{\minted@patch@PYGZsq}{}%
510 \fi
511 }
512 \ifthenelse{\boolean{minted@draft}}{\renewcommand{\minted@checkstyle}[1]{}}{}

\minted@patch@PYGZsq The single quote macro from Pygments 1.6+ needs to be patched if the upquote
package is in use. Patching is done when the default style is created. Patching is
only attempted if the macro exists, so that there is a graceful fallback in the event
of a custom Pygments stylesheet.

513 \newcommand{\minted@patch@PYGZsq}{%
514 \ifcsname PYGZsq\endcsname
515 \expandafter\ifdefstring\expandafter{\csname PYGZsq\endcsname}{\char‘\’}%
516 {\minted@patch@PYGZsq@i}%
517 {}%
518 \fi
519 }
520 \begingroup
521 \catcode‘\’=\active
522 \gdef\minted@patch@PYGZsq@i{\gdef\PYGZsq{’}}
523 \endgroup
524 \ifthenelse{\boolean{minted@draft}}{}{\AtBeginDocument{\minted@patch@PYGZsq}}

\minted@def@opt@switch And we need a switch version.

It would be possible to create a special version of \minted@get@opt to work with
these, but that would be redundant. During the key processing, any values other

58

than true and false are filtered out. So when using \minted@get@opt later, we
know that that part has already been taken care of, and we can just use something
like \ifthenelse{\equal{\minted@get@opt{<opt>}{<default>}}{true}}{...}{...}.
Of course, there is the possibility that a default value has not been set, but
\minted@def@opt@switch sets a global default of false to avoid this. And as usual,
Pygments values shouldn’t be used without considering whether \minted@get@opt
needs a fallback value.

525 \newcommand{\minted@def@opt@switch}[2][false]{%
526 \define@booleankey{minted@opt@g}{#2}%
527 {\@namedef{minted@opt@g:#2}{true}}%
528 {\@namedef{minted@opt@g:#2}{false}}
529 \define@booleankey{minted@opt@g@i}{#2}%
530 {\@namedef{minted@opt@g@i:#2}{true}}%
531 {\@namedef{minted@opt@g@i:#2}{false}}
532 \define@booleankey{minted@opt@lang}{#2}%
533 {\@namedef{minted@opt@lang\minted@lang:#2}{true}}%
534 {\@namedef{minted@opt@lang\minted@lang:#2}{false}}
535 \define@booleankey{minted@opt@lang@i}{#2}%
536 {\@namedef{minted@opt@lang\minted@lang @i:#2}{true}}%
537 {\@namedef{minted@opt@lang\minted@lang @i:#2}{false}}
538 \define@booleankey{minted@opt@cmd}{#2}%
539 {\@namedef{minted@opt@cmd:#2}{true}}%
540 {\@namedef{minted@opt@cmd:#2}{false}}%
541 \@namedef{minted@opt@g:#2}{#1}%
542 }

\minted@get@opt We need a way to traverse the hierarchy of values for a given key and return the
current value that has precedence. In doing this, we need to specify a default value
to use if no value is found. When working with minted-specific values, there should
generally be a default value; in those cases, an empty default may be supplied. But
the macro should also work with Pygments settings, which are stored in macros of
the same form and will sometimes need to be accessed (for example, encoding).
In the Pygments case, there may very well be no default values on the LATEX side,
because we are falling back on Pygments’ own built-in defaults. There is no need
to duplicate those when very few Pygments values are ever needed; it is simpler to
specify the default fallback when accessing the macro value.

From a programming perspective, the default argument value needs to be manda-
tory, so that \minted@get@opt can be fully expandable. This significantly simplifies
accessing options.

543 \def\minted@get@opt#1#2{%
544 \ifcsname minted@opt@cmd:#1\endcsname
545 \csname minted@opt@cmd:#1\endcsname
546 \else
547 \ifminted@isinline
548 \ifcsname minted@opt@lang\minted@lang @i:#1\endcsname
549 \csname minted@opt@lang\minted@lang @i:#1\endcsname

59

550 \else
551 \ifcsname minted@opt@g@i:#1\endcsname
552 \csname minted@opt@g@i:#1\endcsname
553 \else
554 \ifcsname minted@opt@lang\minted@lang:#1\endcsname
555 \csname minted@opt@lang\minted@lang:#1\endcsname
556 \else
557 \ifcsname minted@opt@g:#1\endcsname
558 \csname minted@opt@g:#1\endcsname
559 \else
560 #2%
561 \fi
562 \fi
563 \fi
564 \fi
565 \else
566 \ifcsname minted@opt@lang\minted@lang:#1\endcsname
567 \csname minted@opt@lang\minted@lang:#1\endcsname
568 \else
569 \ifcsname minted@opt@g:#1\endcsname
570 \csname minted@opt@g:#1\endcsname
571 \else
572 #2%
573 \fi
574 \fi
575 \fi
576 \fi
577 }%

Actual option definitions. Some of these must be defined conditionally depending
on whether we are in draft mode; in draft mode, we need to emulate Pygments
functionality with LATEX, particularly with fancyvrb, when possible. For example,
gobbling must be performed by Pygments when draft is off, but when draft is
on, fancyvrb can perform gobbling.

Lexers.

578 \minted@def@optcl{encoding}{-P encoding}{#1}
579 \minted@def@optcl{outencoding}{-P outencoding}{#1}
580 \minted@def@optcl@e{escapeinside}{-P "escapeinside}{#1"}
581 \minted@def@optcl@switch{stripnl}{-P stripnl}
582 \minted@def@optcl@switch{stripall}{-P stripall}
583 % Python console
584 \minted@def@optcl@switch{python3}{-P python3}
585 % PHP
586 \minted@def@optcl@switch{funcnamehighlighting}{-P funcnamehighlighting}
587 \minted@def@optcl@switch{startinline}{-P startinline}

Filters.

60

588 \ifthenelse{\boolean{minted@draft}}%
589 {\minted@def@optfv{gobble}}%
590 {\minted@def@optcl{gobble}{-F gobble:n}{#1}}
591 \minted@def@optcl{codetagify}{-F codetagify:codetags}{#1}
592 \minted@def@optcl{keywordcase}{-F keywordcase:case}{#1}

LATEX formatter.

593 \minted@def@optcl@switch{texcl}{-P texcomments}
594 \minted@def@optcl@switch{texcomments}{-P texcomments}
595 \minted@def@optcl@switch{mathescape}{-P mathescape}
596 \minted@def@optfv@switch{linenos}
597 \minted@def@opt{style}

fancyvrb options.

598 \minted@def@optfv{frame}
599 \minted@def@optfv{framesep}
600 \minted@def@optfv{framerule}
601 \minted@def@optfv{rulecolor}
602 \minted@def@optfv{numbersep}
603 \minted@def@optfv{numbers}
604 \minted@def@optfv{firstnumber}
605 \minted@def@optfv{stepnumber}
606 \minted@def@optfv{firstline}
607 \minted@def@optfv{lastline}
608 \minted@def@optfv{baselinestretch}
609 \minted@def@optfv{xleftmargin}
610 \minted@def@optfv{xrightmargin}
611 \minted@def@optfv{fillcolor}
612 \minted@def@optfv{tabsize}
613 \minted@def@optfv{fontfamily}
614 \minted@def@optfv{fontsize}
615 \minted@def@optfv{fontshape}
616 \minted@def@optfv{fontseries}
617 \minted@def@optfv{formatcom}
618 \minted@def@optfv{label}
619 \minted@def@optfv{labelposition}
620 \minted@def@optfv{highlightlines}
621 \minted@def@optfv{highlightcolor}
622 \minted@def@optfv{space}
623 \minted@def@optfv{spacecolor}
624 \minted@def@optfv{tab}
625 \minted@def@optfv{tabcolor}
626 \minted@def@optfv{highlightcolor}
627 \minted@def@optfv@switch{curlyquotes}
628 \minted@def@optfv@switch{numberfirstline}
629 \minted@def@optfv@switch{stepnumberfromfirst}
630 \minted@def@optfv@switch{stepnumberoffsetvalues}
631 \minted@def@optfv@switch{showspaces}

61

632 \minted@def@optfv@switch{resetmargins}
633 \minted@def@optfv@switch{samepage}
634 \minted@def@optfv@switch{showtabs}
635 \minted@def@optfv@switch{obeytabs}
636 \minted@def@optfv@switch{breaklines}
637 \minted@def@optfv@switch{breakbytoken}
638 \minted@def@optfv@switch{breakbytokenanywhere}
639 \minted@def@optfv{breakindent}
640 \minted@def@optfv@switch{breakautoindent}
641 \minted@def@optfv{breaksymbol}
642 \minted@def@optfv{breaksymbolsep}
643 \minted@def@optfv{breaksymbolindent}
644 \minted@def@optfv{breaksymbolleft}
645 \minted@def@optfv{breaksymbolsepleft}
646 \minted@def@optfv{breaksymbolindentleft}
647 \minted@def@optfv{breaksymbolright}
648 \minted@def@optfv{breaksymbolsepright}
649 \minted@def@optfv{breaksymbolindentright}
650 \minted@def@optfv{breakbefore}
651 \minted@def@optfv{breakbeforesymbolpre}
652 \minted@def@optfv{breakbeforesymbolpost}
653 \minted@def@optfv@switch{breakbeforegroup}
654 \minted@def@optfv{breakafter}
655 \minted@def@optfv@switch{breakaftergroup}
656 \minted@def@optfv{breakaftersymbolpre}
657 \minted@def@optfv{breakaftersymbolpost}
658 \minted@def@optfv@switch{breakanywhere}
659 \minted@def@optfv{breakanywheresymbolpre}
660 \minted@def@optfv{breakanywheresymbolpost}

Finally, options specific to minted.

bgcolor. The original, minipage- and \colorbox-based solution was replaced
with a framed-based solution in version 2.2. A dedicated framing package will
often be preferable.

661 \minted@def@opt{bgcolor}

Autogobble. We create an option that governs when Python’s textwrap.dedent()
is used to autogobble code.

662 \minted@def@opt@switch{autogobble}

\minted@encoding When working with encoding, we will need access to the current encoding. That
may be done via \minted@get@opt, but it is more convenient to go ahead and
define a shortcut with an appropriate default

663 \newcommand{\minted@encoding}{\minted@get@opt{encoding}{UTF8}}

62

8.6 Internal helpers

\minted@bgbox Define an environment that may be wrapped around a minted environment to
assign a background color. This is retained as a holdover from version 1.0. In most
cases, it is probably better to use a dedicated framing package, such as tcolorbox
or mdframed.

First, we need to define a new save box.

664 \newsavebox{\minted@bgbox}

Now we can define the environment that applies a background color. Prior to
minted 2.2, this involved a minipage. However, that approach was problematic
because it did not allow linebreaks, would be pushed into the margin by immediately
preceding text, and had very different whitespace separation from preceding and
following text compared to no background color. In version 2.2, this was replaced
with an approach based on framed. \FV@NumberSep is adjusted by \fboxsep to
ensure that line numbers remain in the same location in the margin regardless of
whether bgcolor is used.

665 \newenvironment{minted@colorbg}[1]{%
666 \setlength{\OuterFrameSep}{0pt}%
667 \colorlet{shadecolor}{#1}%
668 \let\minted@tmp\FV@NumberSep
669 \edef\FV@NumberSep{%
670 \the\numexpr\dimexpr\minted@tmp+\number\fboxsep\relax sp\relax}%
671 \medskip
672 \begin{snugshade*}}
673 {\end{snugshade*}%
674 \medskip\noindent}

\minted@code Create a file handle for saving code (and anything else that must be written to
temp files).

675 \newwrite\minted@code

\minted@savecode Save code to be pygmentized to a file.

676 \newcommand{\minted@savecode}[1]{
677 \immediate\openout\minted@code\minted@jobname.pyg\relax
678 \immediate\write\minted@code{\expandafter\detokenize\expandafter{#1}}%
679 \immediate\closeout\minted@code}

minted@FancyVerbLineTemp At various points, we will need a temporary counter for storing and then restoring
the value of FancyVerbLine. When using the langlinenos option, we need to store
the current value of FancyVerbLine, then set FancyVerbLine to the current value
of a language-specific counter, and finally restore FancyVerbLine to its initial value

63

after the current chunk of code has been typeset. In patching VerbatimOut, we
need to prevent FancyVerbLine from being incremented during the write process.

680 \newcounter{minted@FancyVerbLineTemp}

\minted@FVB@VerbatimOut We need a custom version of fancyvrb’s \FVB@VerbatimOut that supports Unicode
(everything written to file is \detokenized). We also need to prevent the value of
FancyVerbLine from being incorrectly incremented.

681 \newcommand{\minted@write@detok}[1]{%
682 \immediate\write\FV@OutFile{\detokenize{#1}}}
683 \newcommand{\minted@FVB@VerbatimOut}[1]{%
684 \setcounter{minted@FancyVerbLineTemp}{\value{FancyVerbLine}}%
685 \@bsphack
686 \begingroup
687 \FV@UseKeyValues
688 \FV@DefineWhiteSpace
689 \def\FV@Space{\space}%
690 \FV@DefineTabOut
691 \let\FV@ProcessLine\minted@write@detok
692 \immediate\openout\FV@OutFile #1\relax
693 \let\FV@FontScanPrep\relax
694 \let\@noligs\relax
695 \FV@Scan}

\minted@FVE@VerbatimOut Likewise, we need a custom version of \FVE@VerbatimOut that completes the
protection of FancyVerbLine from being incremented.

696 \newcommand{\minted@FVE@VerbatimOut}{%
697 \immediate\closeout\FV@OutFile\endgroup\@esphack
698 \setcounter{FancyVerbLine}{\value{minted@FancyVerbLineTemp}}}%

\MintedPygmentize We need a way to customize the executable/script that is called to perform
highlighting. Typically, we will want pygmentize. But advanced users might wish
to use a custom Python script instead. The command is only defined if it does not
exist. In general, the command should be \renewcommanded after the package is
loaded, but this way, it will work if defined before minted is loaded.

699 \ifcsname MintedPygmentize\endcsname\else
700 \newcommand{\MintedPygmentize}{pygmentize}
701 \fi

minted@pygmentizecounter We need a counter to keep track of how many files have been pygmentized.
This is primarily used with finalizecache for naming cache files sequentially in
listing<number>.pygtex form.

702 \newcounter{minted@pygmentizecounter}

64

\minted@pygmentize Pygmentize a file (default: \minted@outputdir\minted@jobname.pyg) using the
options provided.

Unfortunately, the logic for caching is a little complex due to operations that are
OS- and engine-dependent.

The name of cached files is the result of concatenating the md5 of the code and
the md5 of the command. This results in a filename that is longer than ideal
(64 characters plus path and extension). Unfortunately, this is the only robust
approach that is possible using the built-in pdfTeX hashing capabilities.7 LuaTeX
could do better, by hashing the command and code together. The Python script
that provides XeTeX capabilities simply runs both the command and the code
through a single sha1 hasher, but has the additional overhead of the \write18 call
and Python execution.

One potential concern is that caching should also keep track of the command from
which code originates. What if identical code is highlighted with identical settings
in both the minted environment and \mintinline command? In both cases, what
is actually saved by Pygments is identical. The difference in final appearance is
due to how the environment and command treat the Pygments output.

This macro must always be checked carefully whenever it is modified.
Under no circumstances should #1 be written to or opened by Python in write
mode. When \inputminted is used, #1 will be an external file that is brought in
for highlighting, so it must be left intact.

At the very beginning, a check is performed to make sure that style macros exist.
This must be done before the highlighted content is generated, so that temp file
names can be shared without accidental overwriting. Styles are generated here,
rather than when a style is set, so that creating the style macros is done as late as
possible in case a custom pygmentize is in use via \MintedPygmentize.

703 \newcommand{\minted@pygmentize}[2][\minted@outputdir\minted@jobname.pyg]{%
704 \minted@checkstyle{\minted@get@opt{style}{default}}%
705 \stepcounter{minted@pygmentizecounter}%
706 \ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}%
707 {\def\minted@codefile{\minted@outputdir\minted@jobname.pyg}}%
708 {\def\minted@codefile{#1}}%
709 \ifthenelse{\boolean{minted@isinline}}%
710 {\def\minted@optlistcl@inlines{%
711 \minted@optlistcl@g@i
712 \csname minted@optlistcl@lang\minted@lang @i\endcsname}}%
713 {\let\minted@optlistcl@inlines\@empty}%
714 \def\minted@cmd{%
715 \ifminted@kpsewhich\ifwindows powershell\space\fi\fi
716 \MintedPygmentize\space -l #2

7It would be possible to use only the cache of the code, but that approach breaks down as
soon as the code is used multiple times with different options. While that may seem unlikely in
practice, it occurs in this documentation and may be expected to occur in other docs.

65

717 -f latex -P commandprefix=PYG -F tokenmerge
718 \minted@optlistcl@g \csname minted@optlistcl@lang\minted@lang\endcsname
719 \minted@optlistcl@inlines
720 \minted@optlistcl@cmd -o \minted@outputdir\minted@infile\space
721 \ifminted@kpsewhich
722 \ifwindows
723 \detokenize{$}(kpsewhich \minted@codefile)%
724 \else
725 \detokenize{‘}kpsewhich \minted@codefile\space
726 \detokenize{||} \minted@codefile\detokenize{‘}%
727 \fi
728 \else
729 \minted@codefile
730 \fi}%
731 % For debugging, uncomment: %%%%
732 % \immediate\typeout{\minted@cmd}%
733 % %%%%
734 \ifthenelse{\boolean{minted@cache}}%
735 {%
736 \ifminted@frozencache
737 \else
738 \ifx\XeTeXinterchartoks\minted@undefined
739 \ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}%
740 {\edef\minted@hash{\pdf@filemdfivesum{#1}%
741 \pdf@mdfivesum{\minted@cmd autogobble}}}%
742 {\edef\minted@hash{\pdf@filemdfivesum{#1}%
743 \pdf@mdfivesum{\minted@cmd}}}%
744 \else
745 \ifx\mdfivesum\minted@undefined
746 \immediate\openout\minted@code\minted@jobname.mintedcmd\relax
747 \immediate\write\minted@code{\minted@cmd}%
748 \ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}%
749 {\immediate\write\minted@code{autogobble}}{}%
750 \immediate\closeout\minted@code
751 \edef\minted@argone@esc{#1}%
752 \StrSubstitute{\minted@argone@esc}{\@backslashchar}{\@backslashchar\@backslashchar}[\minted@argone@esc]%
753 \StrSubstitute{\minted@argone@esc}{"}{\@backslashchar"}[\minted@argone@esc]%
754 \edef\minted@tmpfname@esc{\minted@outputdir\minted@jobname}%
755 \StrSubstitute{\minted@tmpfname@esc}{\@backslashchar}{\@backslashchar\@backslashchar}[\minted@tmpfname@esc]%
756 \StrSubstitute{\minted@tmpfname@esc}{"}{\@backslashchar"}[\minted@tmpfname@esc]%
757 %Cheating a little here by using ASCII codes to write ‘{‘ and ‘}‘
758 %in the Python code
759 \def\minted@hashcmd{%
760 \detokenize{python -c "import hashlib; import os;
761 hasher = hashlib.sha1();
762 f = open(os.path.expanduser(os.path.expandvars(\"}\minted@tmpfname@esc.mintedcmd\detokenize{\")), \"rb\");
763 hasher.update(f.read());
764 f.close();
765 f = open(os.path.expanduser(os.path.expandvars(\"}\minted@argone@esc\detokenize{\")), \"rb\");
766 hasher.update(f.read());

66

767 f.close();
768 f = open(os.path.expanduser(os.path.expandvars(\"}\minted@tmpfname@esc.mintedmd5\detokenize{\")), \"w\");
769 macro = \"\\edef\\minted@hash\" + chr(123) + hasher.hexdigest() + chr(125) + \"\";
770 f.write(\"\\makeatletter\" + macro + \"\\makeatother\\endinput\n\");
771 f.close();"}}%
772 \ShellEscape{\minted@hashcmd}%
773 \minted@input{\minted@outputdir\minted@jobname.mintedmd5}%
774 \else
775 \ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}%
776 {\edef\minted@hash{\mdfivesum file {#1}%
777 \mdfivesum{\minted@cmd autogobble}}}%
778 {\edef\minted@hash{\mdfivesum file {#1}%
779 \mdfivesum{\minted@cmd}}}%
780 \fi
781 \fi
782 \edef\minted@infile{\minted@cachedir/\minted@hash.pygtex}%
783 \IfFileExists{\minted@infile}{}{%
784 \ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}{%
785 \edef\minted@argone@esc{#1}%
786 \StrSubstitute{\minted@argone@esc}{\@backslashchar}{\@backslashchar\@backslashchar}[\minted@argone@esc]%
787 \StrSubstitute{\minted@argone@esc}{"}{\@backslashchar"}[\minted@argone@esc]%
788 \edef\minted@tmpfname@esc{\minted@outputdir\minted@jobname}%
789 \StrSubstitute{\minted@tmpfname@esc}{\@backslashchar}{\@backslashchar\@backslashchar}[\minted@tmpfname@esc]%
790 \StrSubstitute{\minted@tmpfname@esc}{"}{\@backslashchar"}[\minted@tmpfname@esc]%
791 %Need a version of open() that supports encoding under Python 2
792 \edef\minted@autogobblecmd{%
793 \detokenize{python -c "import sys; import os;
794 import textwrap;
795 from io import open;
796 f = open(os.path.expanduser(os.path.expandvars(\"}\minted@argone@esc\detokenize{\")), \"r\", encoding=\"}\minted@encoding\detokenize{\");
797 t = f.read();
798 f.close();
799 f = open(os.path.expanduser(os.path.expandvars(\"}\minted@tmpfname@esc.pyg\detokenize{\")), \"w\", encoding=\"}\minted@encoding\detokenize{\");
800 f.write(textwrap.dedent(t));
801 f.close();"}%
802 }%
803 \ShellEscape{\minted@autogobblecmd}}{}%
804 \ShellEscape{\minted@cmd}}%
805 \fi
806 \ifthenelse{\boolean{minted@finalizecache}}%
807 {%
808 \edef\minted@cachefilename{listing\arabic{minted@pygmentizecounter}.pygtex}%
809 \edef\minted@actualinfile{\minted@cachedir/\minted@cachefilename}%
810 \ifwindows
811 \StrSubstitute{\minted@infile}{/}{\@backslashchar}[\minted@infile@windows]
812 \StrSubstitute{\minted@actualinfile}{/}{\@backslashchar}[\minted@actualinfile@windows]
813 \ShellEscape{move /y \minted@infile@windows\space\minted@actualinfile@windows}%
814 \else
815 \ShellEscape{mv -f \minted@infile\space\minted@actualinfile}%
816 \fi

67

817 \let\minted@infile\minted@actualinfile
818 \expandafter\minted@addcachefile\expandafter{\minted@cachefilename}%
819 }%
820 {\ifthenelse{\boolean{minted@frozencache}}%
821 {%
822 \edef\minted@cachefilename{listing\arabic{minted@pygmentizecounter}.pygtex}%
823 \edef\minted@infile{\minted@cachedir/\minted@cachefilename}%
824 \expandafter\minted@addcachefile\expandafter{\minted@cachefilename}}%
825 {\expandafter\minted@addcachefile\expandafter{\minted@hash.pygtex}}%
826 }%
827 \minted@inputpyg}%
828 {%
829 \ifthenelse{\equal{\minted@get@opt{autogobble}{false}}{true}}{%
830 \edef\minted@argone@esc{#1}%
831 \StrSubstitute{\minted@argone@esc}{\@backslashchar}{\@backslashchar\@backslashchar}[\minted@argone@esc]%
832 \StrSubstitute{\minted@argone@esc}{"}{\@backslashchar"}[\minted@argone@esc]%
833 \edef\minted@tmpfname@esc{\minted@outputdir\minted@jobname}%
834 \StrSubstitute{\minted@tmpfname@esc}{\@backslashchar}{\@backslashchar\@backslashchar}[\minted@tmpfname@esc]%
835 \StrSubstitute{\minted@tmpfname@esc}{"}{\@backslashchar"}[\minted@tmpfname@esc]%
836 %Need a version of open() that supports encoding under Python 2
837 \edef\minted@autogobblecmd{%
838 \detokenize{python -c "import sys; import os;
839 import textwrap;
840 from io import open;
841 f = open(os.path.expanduser(os.path.expandvars(\"}\minted@argone@esc\detokenize{\")), \"r\", encoding=\"}\minted@encoding\detokenize{\");
842 t = f.read();
843 f.close();
844 f = open(os.path.expanduser(os.path.expandvars(\"}\minted@tmpfname@esc.pyg\detokenize{\")), \"w\", encoding=\"}\minted@encoding\detokenize{\");
845 f.write(textwrap.dedent(t));
846 f.close();"}%
847 }%
848 \ShellEscape{\minted@autogobblecmd}}{}%
849 \ShellEscape{\minted@cmd}%
850 \minted@inputpyg}%
851 }

\minted@inputpyg For increased clarity, the actual \input process is separated out into its own macro.

At the last possible moment, \PYG is \let to \PYG〈style〉 and redefined to used
appropriate line breaking via \VerbatimPygments from fvextra.

The bgcolor option needs to be dealt with in different ways depending on whether
we are using \mintinline. It is simplest to apply this option here, so that the
macro redefinitions may be local and thus do not need to be manually reset later.

852 \newcommand{\minted@inputpyg}{%
853 \expandafter\let\expandafter\minted@PYGstyle%
854 \csname PYG\minted@get@opt{style}{default}\endcsname
855 \VerbatimPygments{\PYG}{\minted@PYGstyle}%
856 \ifthenelse{\boolean{minted@isinline}}%

68

857 {\ifthenelse{\equal{\minted@get@opt{breaklines}{false}}{true}}%
858 {\let\FV@BeginVBox\relax
859 \let\FV@EndVBox\relax
860 \def\FV@BProcessLine##1{\FancyVerbFormatLine{##1}}%
861 \minted@inputpyg@inline}%
862 {\minted@inputpyg@inline}}%
863 {\minted@inputpyg@block}%
864 }
865 \def\minted@inputpyg@inline{%
866 \ifthenelse{\equal{\minted@get@opt{bgcolor}{}}{}}%
867 {\minted@input{\minted@outputdir\minted@infile}}%
868 {\colorbox{\minted@get@opt{bgcolor}{}}{%
869 \minted@input{\minted@outputdir\minted@infile}}}%
870 }
871 \def\minted@inputpyg@block{%
872 \ifthenelse{\equal{\minted@get@opt{bgcolor}{}}{}}%
873 {\minted@input{\minted@outputdir\minted@infile}}%
874 {\begin{minted@colorbg}{\minted@get@opt{bgcolor}{}}%
875 \minted@input{\minted@outputdir\minted@infile}%
876 \end{minted@colorbg}}}

We need a way to have line counters on a per-language basis.

\minted@langlinenoson

877 \newcommand{\minted@langlinenoson}{%
878 \ifcsname c@minted@lang\minted@lang\endcsname\else
879 \newcounter{minted@lang\minted@lang}%
880 \fi
881 \setcounter{minted@FancyVerbLineTemp}{\value{FancyVerbLine}}%
882 \setcounter{FancyVerbLine}{\value{minted@lang\minted@lang}}%
883 }

\minted@langlinenosoff

884 \newcommand{\minted@langlinenosoff}{%
885 \setcounter{minted@lang\minted@lang}{\value{FancyVerbLine}}%
886 \setcounter{FancyVerbLine}{\value{minted@FancyVerbLineTemp}}%
887 }

Disable the language-specific settings if the package option isn’t used.

888 \ifthenelse{\boolean{minted@langlinenos}}{}{%
889 \let\minted@langlinenoson\relax
890 \let\minted@langlinenosoff\relax
891 }

69

8.7 Public API

\setminted Set global or language-level options.

892 \newcommand{\setminted}[2][]{%
893 \ifthenelse{\equal{#1}{}}%
894 {\setkeys{minted@opt@g}{#2}}%
895 {\minted@configlang{#1}%
896 \setkeys{minted@opt@lang}{#2}}}

\setmintedinline Set global or language-level options, but only for inline (\mintinline) content.
These settings will override the corresponding \setminted settings.

897 \newcommand{\setmintedinline}[2][]{%
898 \ifthenelse{\equal{#1}{}}%
899 {\setkeys{minted@opt@g@i}{#2}}%
900 {\minted@configlang{#1}%
901 \setkeys{minted@opt@lang@i}{#2}}}

Now that the settings macros exist, we go ahead and create any needed defaults.

PHP should use startinline for \mintinline. Visible tabs should have a specified
color so that they don’t change colors when used to indent multiline strings or
comments.

902 \setmintedinline[php]{startinline=true}
903 \setminted{tabcolor=black}

\usemintedstyle Set style. This is a holdover from version 1, since \setminted can now accomplish
this, and a hierarchy of style settings are now possible.

904 \newcommand{\usemintedstyle}[2][]{\setminted[#1]{style=#2}}

\minted@defwhitespace@retok The \mint and \mintinline commands need to be able to retokenize the code they
collect, particularly in draft mode. Retokenizeation involves expansion combined
with \scantokens, with active space and tab characters. The active characters
need to expand to the appropriate fancyvrb macros, but the macros themselves
should not be expanded. We need a macro that will accomplish the appropriate
definitions.

905 \begingroup
906 \catcode‘\ =\active
907 \catcode‘\^^I=\active
908 \gdef\minted@defwhitespace@retok{\def {\noexpand\FV@Space}\def^^I{\noexpand\FV@Tab}}%
909 \endgroup

\minted@writecmdcode The \mintinline and \mint commands will need to write the code they capture
to a temporary file for highlighting. It will be convenient to be able to accomplish

70

this via a simple macro, since that makes it simpler to deal with any expansion of
what is to be written. This isn’t needed for the minted environment, because the
(patched) VerbatimOut is used.

910 \newcommand{\minted@writecmdcode}[1]{%
911 \immediate\openout\minted@code\minted@jobname.pyg\relax
912 \immediate\write\minted@code{\detokenize{#1}}%
913 \immediate\closeout\minted@code}

\mintinline Define an inline command. This requires some catcode acrobatics. The typical
verbatim methods are not used. Rather, a different approach is taken that is
generally more robust when used within other commands (for example, when used
in footnotes).

Pygments saves code wrapped in a Verbatim environment. Getting the inline com-
mand to work correctly require redefining Verbatim to be BVerbatim temporarily.
This approach would break if BVerbatim were ever redefined elsewhere.

Everything needs to be within a \begingroup...\endgroup to prevent settings
from escaping.

In the case of draft mode, the code is captured and retokenized. Then the internals
of fancyvrb are used to emulate SaveVerbatim, so that \BUseVerbatim may be
employed.

The FancyVerbLine counter is altered somehow within \minted@pygmentize, so
we protect against this.

914 \newrobustcmd{\mintinline}[2][]{%
915 \begingroup
916 \setboolean{minted@isinline}{true}%
917 \minted@configlang{#2}%
918 \setkeys{minted@opt@cmd}{#1}%
919 \minted@fvset
920 \begingroup
921 \let\do\@makeother\dospecials
922 \catcode‘\{=1
923 \catcode‘\}=2
924 \catcode‘\^^I=\active
925 \@ifnextchar\bgroup
926 {\minted@inline@iii}%
927 {\catcode‘\{=12\catcode‘\}=12
928 \minted@inline@i}}
929 \def\minted@inline@i#1{%
930 \endgroup
931 \def\minted@inline@ii##1#1{%
932 \minted@inline@iii{##1}}%
933 \begingroup
934 \let\do\@makeother\dospecials
935 \catcode‘\^^I=\active

71

936 \minted@inline@ii}
937 \ifthenelse{\boolean{minted@draft}}%
938 {\newcommand{\minted@inline@iii}[1]{%
939 \endgroup
940 \begingroup
941 \minted@defwhitespace@retok
942 \everyeof{\noexpand}%
943 \endlinechar-1\relax
944 \let\do\@makeother\dospecials
945 \catcode‘\ =\active
946 \catcode‘\^^I=\active
947 \xdef\minted@tmp{\scantokens{#1}}%
948 \endgroup
949 \let\FV@Line\minted@tmp
950 \def\FV@SV@minted@tmp{%
951 \FV@Gobble
952 \expandafter\FV@ProcessLine\expandafter{\FV@Line}}%
953 \ifthenelse{\equal{\minted@get@opt{breaklines}{false}}{true}}%
954 {\let\FV@BeginVBox\relax
955 \let\FV@EndVBox\relax
956 \def\FV@BProcessLine##1{\FancyVerbFormatLine{##1}}%
957 \BUseVerbatim{minted@tmp}}%
958 {\BUseVerbatim{minted@tmp}}%
959 \endgroup}}%
960 {\newcommand{\minted@inline@iii}[1]{%
961 \endgroup
962 \minted@writecmdcode{#1}%
963 \RecustomVerbatimEnvironment{Verbatim}{BVerbatim}{}%
964 \setcounter{minted@FancyVerbLineTemp}{\value{FancyVerbLine}}%
965 \minted@pygmentize{\minted@lang}%
966 \setcounter{FancyVerbLine}{\value{minted@FancyVerbLineTemp}}%
967 \endgroup}}

\mint Highlight a small piece of verbatim code (a single line).

The draft version digs into a good deal of fancyvrb internals. We want to em-
ploy \UseVerbatim, and this requires assembling a macro equivalent to what
SaveVerbatim would have created. Actually, this is superior to what SaveVerbatim
would yield, because line numbering is handled correctly.

968 \newrobustcmd{\mint}[2][]{%
969 \begingroup
970 \minted@configlang{#2}%
971 \setkeys{minted@opt@cmd}{#1}%
972 \minted@fvset
973 \begingroup
974 \let\do\@makeother\dospecials
975 \catcode‘\{=1
976 \catcode‘\}=2
977 \catcode‘\^^I=\active

72

978 \@ifnextchar\bgroup
979 {\mint@iii}%
980 {\catcode‘\{=12\catcode‘\}=12
981 \mint@i}}
982 \def\mint@i#1{%
983 \endgroup
984 \def\mint@ii##1#1{%
985 \mint@iii{##1}}%
986 \begingroup
987 \let\do\@makeother\dospecials
988 \catcode‘\^^I=\active
989 \mint@ii}
990 \ifthenelse{\boolean{minted@draft}}%
991 {\newcommand{\mint@iii}[1]{%
992 \endgroup
993 \begingroup
994 \minted@defwhitespace@retok
995 \everyeof{\noexpand}%
996 \endlinechar-1\relax
997 \let\do\@makeother\dospecials
998 \catcode‘\ =\active
999 \catcode‘\^^I=\active

1000 \xdef\minted@tmp{\scantokens{#1}}%
1001 \endgroup
1002 \let\FV@Line\minted@tmp
1003 \def\FV@SV@minted@tmp{%
1004 \FV@CodeLineNo=1\FV@StepLineNo
1005 \FV@Gobble
1006 \expandafter\FV@ProcessLine\expandafter{\FV@Line}}%
1007 \minted@langlinenoson
1008 \UseVerbatim{minted@tmp}%
1009 \minted@langlinenosoff
1010 \endgroup}}%
1011 {\newcommand{\mint@iii}[1]{%
1012 \endgroup
1013 \minted@writecmdcode{#1}%
1014 \minted@langlinenoson
1015 \minted@pygmentize{\minted@lang}%
1016 \minted@langlinenosoff
1017 \endgroup}}

minted Highlight a longer piece of code inside a verbatim environment.

1018 \ifthenelse{\boolean{minted@draft}}%
1019 {\newenvironment{minted}[2][]
1020 {\VerbatimEnvironment
1021 \minted@configlang{#2}%
1022 \setkeys{minted@opt@cmd}{#1}%
1023 \minted@fvset
1024 \minted@langlinenoson

73

1025 \begin{Verbatim}}%
1026 {\end{Verbatim}%
1027 \minted@langlinenosoff}}%
1028 {\newenvironment{minted}[2][]
1029 {\VerbatimEnvironment
1030 \let\FVB@VerbatimOut\minted@FVB@VerbatimOut
1031 \let\FVE@VerbatimOut\minted@FVE@VerbatimOut
1032 \minted@configlang{#2}%
1033 \setkeys{minted@opt@cmd}{#1}%
1034 \minted@fvset
1035 \begin{VerbatimOut}[codes={\catcode‘\^^I=12}]{\minted@jobname.pyg}}%
1036 {\end{VerbatimOut}%
1037 \minted@langlinenoson
1038 \minted@pygmentize{\minted@lang}%
1039 \minted@langlinenosoff}}

\inputminted Highlight an external source file.

1040 \ifthenelse{\boolean{minted@draft}}%
1041 {\newcommand{\inputminted}[3][]{%
1042 \begingroup
1043 \minted@configlang{#2}%
1044 \setkeys{minted@opt@cmd}{#1}%
1045 \minted@fvset
1046 \VerbatimInput{#3}%
1047 \endgroup}}%
1048 {\newcommand{\inputminted}[3][]{%
1049 \begingroup
1050 \minted@configlang{#2}%
1051 \setkeys{minted@opt@cmd}{#1}%
1052 \minted@fvset
1053 \minted@pygmentize[#3]{#2}%
1054 \endgroup}}

8.8 Command shortcuts

We allow the user to define shortcuts for the highlighting commands.

\newminted Define a new language-specific alias for the minted environment.

1055 \newcommand{\newminted}[3][]{

First, we look whether a custom environment name was given as the first optional
argument. If that’s not the case, construct it from the language name (append
“code”).

1056 \ifthenelse{\equal{#1}{}}
1057 {\def\minted@envname{#2code}}

74

1058 {\def\minted@envname{#1}}

Now, we define two environments. The first takes no further arguments. The
second, starred version, takes an extra argument that specifies option overrides.

1059 \newenvironment{\minted@envname}
1060 {\VerbatimEnvironment
1061 \begin{minted}[#3]{#2}}
1062 {\end{minted}}
1063 \newenvironment{\minted@envname *}[1]
1064 {\VerbatimEnvironment\begin{minted}[#3,##1]{#2}}
1065 {\end{minted}}}

\newmint Define a new language-specific alias for the \mint short form.

1066 \newcommand{\newmint}[3][]{

Same as with \newminted, look whether an explicit name is provided. If not, take
the language name as command name.

1067 \ifthenelse{\equal{#1}{}}
1068 {\def\minted@shortname{#2}}
1069 {\def\minted@shortname{#1}}

And define the macro.

1070 \expandafter\newcommand\csname\minted@shortname\endcsname[2][]{
1071 \mint[#3,##1]{#2}##2}}

\newmintedfile Define a new language-specific alias for \inputminted.

1072 \newcommand{\newmintedfile}[3][]{

Here, the default macro name (if none is provided) appends “file” to the language
name.

1073 \ifthenelse{\equal{#1}{}}
1074 {\def\minted@shortname{#2file}}
1075 {\def\minted@shortname{#1}}

. . . and define the macro.

1076 \expandafter\newcommand\csname\minted@shortname\endcsname[2][]{
1077 \inputminted[#3,##1]{#2}{##2}}}

\newmintinline Define an alias for \mintinline.

As is usual with inline commands, a little catcode trickery must be employed.

1078 \newcommand{\newmintinline}[3][]{%

75

1079 \ifthenelse{\equal{#1}{}}%
1080 {\def\minted@shortname{#2inline}}%
1081 {\def\minted@shortname{#1}}%
1082 \expandafter\newrobustcmd\csname\minted@shortname\endcsname{%
1083 \begingroup
1084 \let\do\@makeother\dospecials
1085 \catcode‘\{=1
1086 \catcode‘\}=2
1087 \@ifnextchar[{\endgroup\minted@inliner[#3][#2]}%
1088 {\endgroup\minted@inliner[#3][#2][]}}%
1089 \def\minted@inliner[##1][##2][##3]{\mintinline[##1,##3]{##2}}%
1090 }

8.9 Float support

listing Define a new floating environment to use for floated listings. This is defined
conditionally based on the newfloat package option.

1091 \ifthenelse{\boolean{minted@newfloat}}%
1092 {\@ifundefined{minted@float@within}%
1093 {\DeclareFloatingEnvironment[fileext=lol,placement=h]{listing}}%
1094 {\def\minted@tmp#1{%
1095 \DeclareFloatingEnvironment[fileext=lol,placement=h, within=#1]{listing}}%
1096 \expandafter\minted@tmp\expandafter{\minted@float@within}}}%
1097 {\@ifundefined{minted@float@within}%
1098 {\newfloat{listing}{h}{lol}}%
1099 {\newfloat{listing}{h}{lol}[\minted@float@within]}}

The following macros only apply when listing is created with the float package.
When listing is created with newfloat, its properties should be modified using
newfloat’s \SetupFloatingEnvironment.

1100 \ifminted@newfloat\else

\listingcaption The name that is displayed before each individual listings caption and its number.
The macro \listingscaption can be redefined by the user.

1101 \newcommand{\listingscaption}{Listing}

The following definition should not be changed by the user.

1102 \floatname{listing}{\listingscaption}

\listoflistingscaption The caption that is displayed for the list of listings.

1103 \newcommand{\listoflistingscaption}{List of Listings}

76

\listoflistings Used to produce a list of listings (like \listoffigures etc.). This may well clash
with other packages (for example, listings) but we choose to ignore this since these
two packages shouldn’t be used together in the first place.

1104 \providecommand{\listoflistings}{\listof{listing}{\listoflistingscaption}}

Again, the preceding macros only apply when float is used to create listings, so we
need to end the conditional.

1105 \fi

8.10 Epilogue

Check whether LaTeX was invoked with -shell-escape option, set the default
style, and make sure pygmentize exists. Checking for pygmentize must wait until
the end of the preamble, in case it is specified via \MintedPygmentize (which
would typically be after the package is loaded).

1106 \AtEndOfPackage{%
1107 \ifthenelse{\boolean{minted@draft}}%
1108 {}%
1109 {%
1110 \ifthenelse{\boolean{minted@frozencache}}{}{%
1111 \ifnum\pdf@shellescape=1\relax\else
1112 \PackageError{minted}%
1113 {You must invoke LaTeX with the
1114 -shell-escape flag}%
1115 {Pass the -shell-escape flag to LaTeX. Refer to the minted.sty
1116 documentation for more information.}%
1117 \fi}%
1118 }%
1119 }
1120 \AtEndPreamble{%
1121 \ifthenelse{\boolean{minted@draft}}%
1122 {}%
1123 {%
1124 \ifthenelse{\boolean{minted@frozencache}}{}{%
1125 \TestAppExists{\MintedPygmentize}%
1126 \ifAppExists\else
1127 \PackageError{minted}%
1128 {You must have ‘pygmentize’ installed
1129 to use this package}%
1130 {Refer to the installation instructions in the minted
1131 documentation for more information.}%
1132 \fi}%
1133 }%
1134 }

77

8.11 Final cleanup

Clean up temp files. What actually needs to be done depends on caching and
engine.

1135 \AfterEndDocument{%
1136 \ifthenelse{\boolean{minted@draft}}%
1137 {}%
1138 {\ifthenelse{\boolean{minted@frozencache}}%
1139 {}
1140 {\ifx\XeTeXinterchartoks\minted@undefined
1141 \else
1142 \DeleteFile[\minted@outputdir]{\minted@jobname.mintedcmd}%
1143 \DeleteFile[\minted@outputdir]{\minted@jobname.mintedmd5}%
1144 \fi
1145 \DeleteFile[\minted@outputdir]{\minted@jobname.pyg}%
1146 \DeleteFile[\minted@outputdir]{\minted@jobname.out.pyg}%
1147 }%
1148 }%
1149 }

9 Implementation of compatibility package

minted version 2 is designed to be completely compatible with version 1.7. All of
the same options and commands still exist. As far as most users are concerned,
the only difference should be the new commands and options.

However, minted 2 does require some additional packages compared to minted 1.7.
More importantly, since minted 2 has almost completely new internal code, user
code that accessed the internals of 1.7 will generally not work with 2.0, at least
not without some modification. For these reasons, a copy of minted 1.7 is supplied
as the package minted1. This is intended only for compatibility cases when using
the current version is too inconvenient.

The code in minted1 is an exact copy of minted version 1.7, except for two things:
(1) the package has been renamed, and (2) code has been added that allows minted1
to act as (impersonate) minted, so that it can cooperate with other packages that
require minted to be loaded.8 When minted1 is used, it must be loaded before any
other packages that would require minted.

All modifications to the original minted 1.7 source are indicated with comments.
All original code that has been replaced has been commented out rather than
deleted. Any future modifications of minted1 should only be for the purpose of
allowing it to serve better as a drop-in compatibility substitute for the current

8The approach used for doing this is described at http://tex.stackexchange.com/a/39418/
10742.

78

http://tex.stackexchange.com/a/39418/10742
http://tex.stackexchange.com/a/39418/10742

release of minted.

1 \NeedsTeXFormat{LaTeX2e}
2 %%%% Begin minted1 modification
3 %%\ProvidesPackage{minted}[2011/09/17 v1.7 Yet another Pygments shim for LaTeX]
4 \ProvidesPackage{minted1}[2015/01/31 v1.0 minted 1.7 compatibility package]
5 %%%% End minted1 modification
6 \RequirePackage{keyval}
7 \RequirePackage{fancyvrb}
8 \RequirePackage{xcolor}
9 \RequirePackage{float}

10 \RequirePackage{ifthen}
11 %%%% Begin minted1 modification
12 \newboolean{mintedone@mintedloaded}
13 \@ifpackageloaded{minted}%
14 {\setboolean{mintedone@mintedloaded}{true}%
15 \PackageError{minted1}{The package "minted1" may not be loaded after
16 ^^J"minted" has already been loaded--load "minted1" only for "minted"
17 ^^Jversion 1.7 compatibility}%
18 {Load "minted1" only when "minted" version 1.7 compatibility is required}}%
19 {}
20 \ifmintedone@mintedloaded\else
21 \@namedef{ver@minted.sty}{2011/09/17 v1.7 Yet another Pygments shim for LaTeX}
22 \expandafter\let\expandafter\minted@tmp\csname opt@minted1.sty\endcsname
23 \expandafter\let\csname opt@minted.sty\endcsname\minted@tmp
24 \let\minted@tmp\relax
25 %%%% End minted1 modification
26 \RequirePackage{calc}
27 \RequirePackage{ifplatform}
28 \DeclareOption{chapter}{\def\minted@float@within{chapter}}
29 \DeclareOption{section}{\def\minted@float@within{section}}
30 \ProcessOptions\relax
31 \ifwindows
32 \providecommand\DeleteFile[1]{\immediate\write18{del #1}}
33 \else
34 \providecommand\DeleteFile[1]{\immediate\write18{rm #1}}
35 \fi
36 \newboolean{AppExists}
37 \newcommand\TestAppExists[1]{
38 \ifwindows
39 \DeleteFile{\jobname.aex}
40 \immediate\write18{for \string^\@percentchar i in (#1.exe #1.bat #1.cmd)
41 do set >\jobname.aex <nul: /p x=\string^\@percentchar \string~$PATH:i>>\jobname.aex} %$
42 \newread\@appexistsfile
43 \immediate\openin\@appexistsfile\jobname.aex
44 \expandafter\def\expandafter\@tmp@cr\expandafter{\the\endlinechar}
45 \endlinechar=-1\relax
46 \readline\@appexistsfile to \@apppathifexists
47 \endlinechar=\@tmp@cr
48 \ifthenelse{\equal{\@apppathifexists}{}}

79

49 {\AppExistsfalse}
50 {\AppExiststrue}
51 \immediate\closein\@appexistsfile
52 \DeleteFile{\jobname.aex}
53 \immediate\typeout{file deleted}
54 \else
55 \immediate\write18{which #1 && touch \jobname.aex}
56 \IfFileExists{\jobname.aex}
57 {\AppExiststrue
58 \DeleteFile{\jobname.aex}}
59 {\AppExistsfalse}
60 \fi}
61 \newcommand\minted@resetoptions{}
62 \newcommand\minted@defopt[1]{
63 \expandafter\def\expandafter\minted@resetoptions\expandafter{%
64 \minted@resetoptions
65 \@namedef{minted@opt@#1}{}}}
66 \newcommand\minted@opt[1]{
67 \expandafter\detokenize%
68 \expandafter\expandafter\expandafter{\csname minted@opt@#1\endcsname}}
69 \newcommand\minted@define@opt[3][]{
70 \minted@defopt{#2}
71 \ifthenelse{\equal{#1}{}}{
72 \define@key{minted@opt}{#2}{\@namedef{minted@opt@#2}{#3}}}
73 {\define@key{minted@opt}{#2}[#1]{\@namedef{minted@opt@#2}{#3}}}}
74 \newcommand\minted@define@switch[3][]{
75 \minted@defopt{#2}
76 \define@booleankey{minted@opt}{#2}
77 {\@namedef{minted@opt@#2}{#3}}
78 {\@namedef{minted@opt@#2}{#1}}}
79 \minted@defopt{extra}
80 \newcommand\minted@define@extra[1]{
81 \define@key{minted@opt}{#1}{
82 \expandafter\def\expandafter\minted@opt@extra\expandafter{%
83 \minted@opt@extra,#1=##1}}}
84 \newcommand\minted@define@extra@switch[1]{
85 \define@booleankey{minted@opt}{#1}
86 {\expandafter\def\expandafter\minted@opt@extra\expandafter{%
87 \minted@opt@extra,#1}}
88 {\expandafter\def\expandafter\minted@opt@extra\expandafter{%
89 \minted@opt@extra,#1=false}}}
90 \minted@define@switch{texcl}{-P texcomments}
91 \minted@define@switch{mathescape}{-P mathescape}
92 \minted@define@switch{linenos}{-P linenos}
93 \minted@define@switch{startinline}{-P startinline}
94 \minted@define@switch[-P funcnamehighlighting=False]%
95 {funcnamehighlighting}{-P funcnamehighlighting}
96 \minted@define@opt{gobble}{-F gobble:n=#1}
97 \minted@define@opt{bgcolor}{#1}
98 \minted@define@extra{frame}

80

99 \minted@define@extra{framesep}
100 \minted@define@extra{framerule}
101 \minted@define@extra{rulecolor}
102 \minted@define@extra{numbersep}
103 \minted@define@extra{firstnumber}
104 \minted@define@extra{stepnumber}
105 \minted@define@extra{firstline}
106 \minted@define@extra{lastline}
107 \minted@define@extra{baselinestretch}
108 \minted@define@extra{xleftmargin}
109 \minted@define@extra{xrightmargin}
110 \minted@define@extra{fillcolor}
111 \minted@define@extra{tabsize}
112 \minted@define@extra{fontfamily}
113 \minted@define@extra{fontsize}
114 \minted@define@extra{fontshape}
115 \minted@define@extra{fontseries}
116 \minted@define@extra{formatcom}
117 \minted@define@extra{label}
118 \minted@define@extra@switch{numberblanklines}
119 \minted@define@extra@switch{showspaces}
120 \minted@define@extra@switch{resetmargins}
121 \minted@define@extra@switch{samepage}
122 \minted@define@extra@switch{showtabs}
123 \minted@define@extra@switch{obeytabs}
124 \newsavebox{\minted@bgbox}
125 \newenvironment{minted@colorbg}[1]{
126 \def\minted@bgcol{#1}
127 \noindent
128 \begin{lrbox}{\minted@bgbox}
129 \begin{minipage}{\linewidth-2\fboxsep}}
130 {\end{minipage}
131 \end{lrbox}%
132 \colorbox{\minted@bgcol}{\usebox{\minted@bgbox}}}
133 \newwrite\minted@code
134 \newcommand\minted@savecode[1]{
135 \immediate\openout\minted@code\jobname.pyg
136 \immediate\write\minted@code{#1}
137 \immediate\closeout\minted@code}
138 \newcommand\minted@pygmentize[2][\jobname.pyg]{
139 \def\minted@cmd{pygmentize -l #2 -f latex -F tokenmerge
140 \minted@opt{gobble} \minted@opt{texcl} \minted@opt{mathescape}
141 \minted@opt{startinline} \minted@opt{funcnamehighlighting}
142 \minted@opt{linenos} -P "verboptions=\minted@opt{extra}"
143 -o \jobname.out.pyg #1}
144 \immediate\write18{\minted@cmd}
145 % For debugging, uncomment:
146 %\immediate\typeout{\minted@cmd}
147 \ifthenelse{\equal{\minted@opt@bgcolor}{}}
148 {}

81

149 {\begin{minted@colorbg}{\minted@opt@bgcolor}}
150 \input{\jobname.out.pyg}
151 \ifthenelse{\equal{\minted@opt@bgcolor}{}}
152 {}
153 {\end{minted@colorbg}}
154 \DeleteFile{\jobname.out.pyg}}
155 \newcommand\minted@usedefaultstyle{\usemintedstyle{default}}
156 \newcommand\usemintedstyle[1]{
157 \renewcommand\minted@usedefaultstyle{}
158 \immediate\write18{pygmentize -S #1 -f latex > \jobname.pyg}
159 \input{\jobname.pyg}}
160 \newcommand\mint[3][]{
161 \DefineShortVerb{#3}
162 \minted@resetoptions
163 \setkeys{minted@opt}{#1}
164 \SaveVerb[aftersave={
165 \UndefineShortVerb{#3}
166 \minted@savecode{\FV@SV@minted@verb}
167 \minted@pygmentize{#2}
168 \DeleteFile{\jobname.pyg}}]{minted@verb}#3}
169 \newcommand\minted@proglang[1]{}
170 \newenvironment{minted}[2][]
171 {\VerbatimEnvironment
172 \renewcommand{\minted@proglang}[1]{#2}
173 \minted@resetoptions
174 \setkeys{minted@opt}{#1}
175 \begin{VerbatimOut}[codes={\catcode‘\^^I=12}]{\jobname.pyg}}%
176 {\end{VerbatimOut}
177 \minted@pygmentize{\minted@proglang{}}
178 \DeleteFile{\jobname.pyg}}
179 \newcommand\inputminted[3][]{
180 \minted@resetoptions
181 \setkeys{minted@opt}{#1}
182 \minted@pygmentize[#3]{#2}}
183 \newcommand\newminted[3][]{
184 \ifthenelse{\equal{#1}{}}
185 {\def\minted@envname{#2code}}
186 {\def\minted@envname{#1}}
187 \newenvironment{\minted@envname}
188 {\VerbatimEnvironment\begin{minted}[#3]{#2}}
189 {\end{minted}}
190 \newenvironment{\minted@envname *}[1]
191 {\VerbatimEnvironment\begin{minted}[#3,##1]{#2}}
192 {\end{minted}}}
193 \newcommand\newmint[3][]{
194 \ifthenelse{\equal{#1}{}}
195 {\def\minted@shortname{#2}}
196 {\def\minted@shortname{#1}}
197 \expandafter\newcommand\csname\minted@shortname\endcsname[2][]{
198 \mint[#3,##1]{#2}##2}}

82

199 \newcommand\newmintedfile[3][]{
200 \ifthenelse{\equal{#1}{}}
201 {\def\minted@shortname{#2file}}
202 {\def\minted@shortname{#1}}
203 \expandafter\newcommand\csname\minted@shortname\endcsname[2][]{
204 \inputminted[#3,##1]{#2}{##2}}}
205 \@ifundefined{minted@float@within}
206 {\newfloat{listing}{h}{lol}}
207 {\newfloat{listing}{h}{lol}[\minted@float@within]}
208 \newcommand\listingscaption{Listing}
209 \floatname{listing}{\listingscaption}
210 \newcommand\listoflistingscaption{List of listings}
211 \providecommand\listoflistings{\listof{listing}{\listoflistingscaption}}
212 \AtBeginDocument{
213 \minted@usedefaultstyle}
214 \AtEndOfPackage{
215 \ifnum\pdf@shellescape=1\relax\else
216 \PackageError{minted}
217 {You must invoke LaTeX with the
218 -shell-escape flag}
219 {Pass the -shell-escape flag to LaTeX. Refer to the minted.sty
220 documentation for more information.}\fi
221 \TestAppExists{pygmentize}
222 \ifAppExists\else
223 \PackageError{minted}
224 {You must have ‘pygmentize’ installed
225 to use this package}
226 {Refer to the installation instructions in the minted
227 documentation for more information.}
228 \fi}
229 %%%% Begin minted1 modification
230 \fi
231 %%%% End minted1 modification

83

	Introduction
	Installation
	Prerequisites
	Required packages
	Installing minted

	Basic usage
	Preliminary
	A minimal complete example
	Formatting source code
	Using different styles
	Supported languages

	Floating listings
	Options
	Package options
	Macro option usage
	Available options

	Defining shortcuts
	FAQ and Troubleshooting
	Version History
	Implementation
	Required packages
	Package options
	Input, caching, and temp files
	OS interaction
	Option processing
	Internal helpers
	Public API
	Command shortcuts
	Float support
	Epilogue
	Final cleanup

	Implementation of compatibility package

