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Abstract

For large Wave Field Synthesis (WFS) systems mul-
tiple computers are needed for rendering to manage
the necessary amount of audio channels. To make
this possible with the sWONDER software, the soft-
ware was completely restructured and divided into
several separate programs which can run on multi-
ple computers, communicating with each other via
OpenSoundControl. This paper describes the new
structure of the program, as well as several imple-
mentation details of the scheduling unit and audio
rendering unit.
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1 Introduction

Wave Field Synthesis (WFS) is a method for
sound spatialisation. Its main advantage is that
it has no sweet spot, but instead a large listen-
ing area, making the technology attractive for
concert situations.

The main principle of WFS is illustrated in
figure 1. A wave field can be synthesized by a
superposition of wave fields caused by a lot of
small secondary sources, provided you calculate
the right delays and amplitude factors for the
source signal for each secondary source.

For large WFS systems the calculation of
the audio signals for each loudspeaker cannot
be done on just one computer, due to limita-
tions of the CPU-power and hardware consider-
ations, such as the number of output channels.
Thus, a cluster of computers is necessary, and
there is a need to synchronise these calculations.
The previous versions of sWONDER [1; 2| were
monolithic programs, which did not provide this
option. This paper describes a new structure
for the sSWONDER program, which enables the
software to control large scale WES systems.

2 Hardware setup

In 2006/2007, the TU Berlin launched a project
to equip one of the lecture halls with a large

baalman@kgw.tu-berlin.de and torbenh@gmx.de and simon@schampijer.de and tiko@admin-box.com

g |

Y/ Vs

A TAY, AV g
oK S

AV 24V,
s ¥

/e
7854

XL

—~ — —

S SIS

N 1
\BAVAY VAS VA FAV VAV VAS A

e

-
S

O,

(a) The Huygens’
Principle

(b) Wave Field
Synthesis

Figure 1: From the Huygen’s Principle to Wave
Field Synthesis

WEFS system|3; 4], of in total 840 loudspeaker
channels, both for sound reinforcement during
the regular lectures, as well as to have a large
scale WF'S system for both scientific and artistic
research purposes. The loudspeakers are built
into loudspeaker panels|[5|, each providing 8 au-
dio channels, which are fed with an ADAT sig-
nal. Each panel additionally has 2 larger speak-
ers which emit the low-pass filtered sum of the
4 channels above it.

To drive these speakers a cluster of 15 Linux
computers is used. FEach computer computes
the loudspeaker signals for 56 loudspeaker chan-
nels. Each computer is equipped with an RME
HDSP MADI|6] sound card. Each MADI out-
put is connected to an MADI to ADAT bridge
(RME ADI648|6]), which is mounted inside the
wall, so that the ADAT cables can be kept short
(up to 10 meters). The input to the system is
multiplexed to each MADI sound card with the
use of MADI bridges (RME MADI Bridge|6]).

The cluster has two networks, one for the

OSC[7] communication, and one for data-
transfer. Separating these network functions,
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Figure 2: Schematic overview of the hardware setup for the WFS system in the lecture hall of the

TU Berlin.

ensures that the OSC communication is fast.
The master machine (Control PC) acts as a
bridge to the outside world and is the only com-
puter that is connected to an external network.

A general overview of the hardware setup is
given in figure 2.

The sWONDER software was adapted to con-
trol this system, in such a way, that it can also
be used by similar but not necessarily identical
systems.

3 Software architecture

The software is divided in several parts:

a graphical user interface,

a score player/recorder,

a control unit,

a real-time render unit,
e an offline render unit

e and a common library for general functions.

Communication between the different parts of
the program is based on the OSC protocol|7].
Figure 3 gives an overview of the program parts
and their communication.

3.1 Graphical User Interface

The graphical user interface (GUI) provides di-
alogs for loudspeaker array configuration, grid
point configuration (possible source positions
and their characteristics), composition and a
real time control interface. In the real time
control interface, it is possible to move sources
around with the mouse, as well as to store dif-
ferent scenes, between which can be switched.
The GUI is currently still in development, and
will be based on the current GUI [1; 2]. It will
be ported to Qt4 [8], its usability will be im-
proved, and we are working on ways to visualise
the timeline of two-dimensional movement.

3.2 Score player/recorder

The system can take any kind of audio in-
put, so that the user can use the audio player
(s)he prefers to play the audio. The score
player/recorder is used to synchronise with an
audio player and record and playback source
movements. Synchronisation is based on MTC
(Midi Time Code), as this is a clock format
which many DAW’s support.
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Figure 3: Schematic overview of the different parts of the software sWONDER. The control unit
can communicate with an arbitrary number (N) of realtime and offline renderers.

3.3 Offline renderer

For room simulations or for complex sound
sources [9], the calculations for the impulse re-
sponses for each speaker can take quite long, and
cannot be performed in realtime. For this pur-
pose, there will be an offline render unit, which
takes care of all these calculations, utilising the
benefit from parallel execution on a cluster.

3.4 Control unit

The control unit acts as a bridge between the
user interface and the audio renderers; it also
communicates with the score player/recorder.
Though the sWONDER suite of programs will
also supply a graphical user interface, any other
program that can send (and receive) OSC can
be used to control the system. The user inter-
face only needs to communicate with the con-
trol unit, and does not need to know anything
about the audio rendering details; the control
unit takes care of that.

3.5 Rendering engine

The real-time render unit is responsible for the
actual audio signal processing. It has several
ways to deal with the audio streams: playback
of direct sound, utilising weighted delay lines,
convolution of the input sound for early reflec-
tions, and convolution of the input sound for re-
verb followed by a weighted delay lines to create
plane waves with the reverb tail. Schematically
this is shown in figure 4.

The rendering engine consists of two parts:
twonder for the delay line implementation, and
fwonder for the convolution. Both programs are
controlled by OSC; audio input and output has
JACK as the audio backend.

4 Direct sound
4.1 Delay lines

The direct sound of a WFS synthesized source,
consists of the delayed and attenuated source
signal. This delay and attenuation is unique for
each speaker. The direct sound of the source
is rendered in the time-domain by the twonder
part of the program.

To initialise the delay lines, the length of the
delay lines need to be determined. The length is
related to the largest distance a source will have
to a speaker. Also, it needs to be decided how
far in front of the speakers we want to move
a source, as this determines the needed delay
offset. If no focused sources are needed, we can
set the delay offset to a smaller number, thus
introducing less latency in the system. These
options can be set per source.

4.2 Moving sources

When a source moves, the delay time will change
continuously, as well as the volume factor. In
twonder the delay time for the start and the
end of the block is calculated (thus these are
a kind of anchor points), and the samples in-
side the block are resampled. This is clarified
in figure 5. If the delay time is 20 samples at
the start of the block, and 30 samples at the
end of the block, we need to output 10 sam-
ples less than the actual block size N. Thus,
we need to resample N — 10 to N samples. Be-
cause of the CPU restraints (we need to do this
for a lot of delaylines in realtime), we need an
efficient resampling algorithm. We chose linear
interpolated resampling. The implementation is
a modified version of Bresenham’s line drawing
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Figure 4: An overview of the audio signal processing by the real-time render unit
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Figure 5: Ilustration of the resampling problem:
if the delay time gets longer within a certain
block, we need to output more samples than we
have available in our buffer. Thus, we need to
upsample the avaible samples. If the delay time
gets shorter, we need to output less samples,
than we have available in our buffer and we need
to downsample them.

algorithm [10], which eliminates the need to cast
a float to an integer in the innner loop.

Moving a source in this way, creates a Doppler
effect, which will be audible if the movement is
very fast. In some cases it is not desired to hear
a Doppler effect, so another option for move-
ment is provided, which we have called a fade
jump. Using this option, the illusion of move-
ment is created by fading the source out on one
position, while fading it in on the next position.
The update frequency for this can be set by the
user.

4.3 Plane waves

Plane waves are achieved by just varying the de-
lay times for each speaker, based on the angle
the wave front makes with the speaker array. A
delay offset is created by giving the plane wave
a point of origin in space, in addition to its di-
rection. This approach also makes it possible to
switch from a point source to a plane wave and
vice versa.

Plane waves can be used to simulate sources
that are very far away and only have a direction,
or to simulate reflections, as will described in the
next section.

5 Room simulation

Room simulation is achieved by adding reflec-
tions to the direct sound. This can be achieved
in several ways: (1) inclusion of a first reflection
in the delay line, (2) doing a short convolution
for early reflections for each speaker with offline
calculated impulse responses (IRs) and (3) doing
a convolution with a longer impulse response,
the result of which will be played back using
plane waves.

The first option is in development. In this
option also a filter on the reflected sound can be
included, provided the filter can be created with
ca. 8 FIR taps.

The second and third option are possible al-
ready, though the offline renderer to calculate
the early reflection impulse responses is not
ready yet. Alternately, other methods could be
used to calculate the early reflection IRs, such
as an old version of sSWONDER, or using an
approach based on measurements such as de-
scribed in [11; 12; 13]

Ad 2: The impulse responses are unique to
each source position and speaker. Thus for each
speaker a convolution needs to be made. This
option is CPU-intensive, and requires all of the
impulse responses to be loaded into memory. In
|14| research is presented from which can be con-
cluded how closely gridpoints need to be spaced
to ensure perceptual consistency of the wave
field, for a specific setup (depending on the di-
mensions of the virtual room, as well as the size
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of the desired listening area).

Ad 3: research at the TU Delft has proved
that using 8 plane waves (at 45 degrees inter-
val directions) is sufficient to create a realistic
reverberation[15].

5.1 Convolution

The fwonder program implements a fast convo-
lution from multiple inputs to (even more) mul-
tiple outputs. It uses the same complex multi-
plication method as BruteFIR [16]. Instead of
extending BruteFIR we rewrote a convolution
engine from scratch, because this was consid-
ered faster than extending BruteFIR, due to the
lack of transparency and documentation of the
BruteFIR code. The other available solutions
were not written in C++ or tied to SuperCol-
lider [17; 18], which would have slowed down de-
velopment also. So we decided to reimplement
the algorithm, while learning from the others.

5.2 IR caching

When a source is moving, we need to change the
impulse responses being used. Because the set
of impulse responses does not fit into memory,
a cache structure needs to manage the loading
of the impulse responses from disk.

This problem is solved as follows: when the
position of a source changes the Ul sends the ab-
solute position in meter to the control unit. The
control unit sends the new position to twonder,
and simultaneously calculates the corresponding
(closest) grid position for which an early reflec-
tion impulse response is available, and sends this
information to the render unit. The render unit
then switches the impulse responses used in the
convolution to the new ones. Crossfading is used
to reduce the artefacts of this process.

Because the loading of new impulse responses
is a task that takes some time to complete, it
should happen before an event actually occurs
if possible. In real-time mode we do not know
in advance what parameters of which source will
change next. As a solution the grid of points for
which IRs are calculated is divided in anchor
points and normal points. Anchor points are
points whose IRs are always stored in memory.
When a source moves to a new location, first
the IR of the anchor point is used, and then the
surrounding points are loaded into memory, so
that changes to locations nearby can be made in
real-time (see figure 6). When there is a score,
we do know which IRs are needed in the future,
and we can determine the needed IRs in time,
as shown in figure 7.
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Figure 6: Loading grid point impulse responses
into cache. The black points are the anchor
points and correspond to impulse responses that
are always loaded in memory. The red (darkest
grey) point indicates the grid point used for the
current position, the orange (grey) points the
one for which the IRs are currently loaded in
memory. The light grey points are the available
points.

Figure 7: Loading grid point impulse responses
into cache while playing a score. As we know the
future locations of the source, we can preload
the IRs that correspond precisely to the sound
path.

The control unit takes care of this scheduling
of loading and unloading of IRs and sends com-
mands to the render units to perform this (i.e.
the render unit is 'stupid’ and just follows the
orders of the control unit).

5.3 Calculating the IRs

The IRs as described above, will need to be
calculated beforehand with the offline renderer.
This is handled as follows: in the UI the user
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defines a grid of points and virtual room dimen-
sions. Then he sends a message to the control
unit to start the calculation. The control unit
then communicates with all the offline render-
ers that are running, to perform this task, and
sends a message back to the Ul when the task
is completed. Then the calculated IRs can be
used in realtime.

6 Time and synchronisation

There are several concepts of time within the
system: the user interface can send messages,
which have to be executed now and have a cer-
tain duration; or it can send messages which
have to be executed at a certain time from now
and have a certain duration.

The score player/recorder has to deal with
both MTC and synchronise itself to that clock,
as well as communicate to the control unit, just
like other user interfaces.

All communication from the user interface to
the control unit about time, is in seconds. As
the renderers need to be synchronised with sam-
ple accuracy, the control unit translates the time
in seconds to frame time. The audio clock is
used as the time reference. This clock is reliable,
has got the desired granularity and is present on
each render unit and the control unit. The au-
dio devices in the units are fed with a MADI
signal including a word clock signal. Because
the audio links are digital, a sawtooth generated
at the control node, will be sufficient to extract
the initial synchronisation position from the au-
dio signal. When initial synchronisation is done,
sync will be maintained by the word clock sync.

This leads to a system with one central clock
and avoids the need for clock skew compensation
which is needed when having multiple clocks.

As an example we consider the task of chang-
ing the position of a source. This information
is sent from the UI to the control unit where
a timestamp for this event is generated. Since
the control unit has the information about the
actual time in samples the messages will be
stamped with this time reference and send to
the render unit.

Both the control unit and the render unit can
deal with interpolation over time, i.e. it is pos-
sible to send the control unit a message to move
a source from one position to another with a
certain duration of the movement. The control
unit will pass on this duration to twonder, which
then interpolates the movement and calculates
the positions (and thus the delays) at the end
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of each block, and creates the movement. The
control unit will also calculate the intermediate
positions on the grid, and ensure that the IRs for
the intermediate points are preloaded by fwon-
der and the IRs needed for the current position
are switched to in time.

7 File formats

For configuration of the system and creating a
project with the system, several files are needed
to store the relevant data.

It was chosen to use XML for the format for
storing this data, as it is easily extendible in case
of need.

There are files for:

Configuration This contains the data about
the rendering units: the network setup and
the speaker setup.

Project This contains the general settings for
a project, such as how many sources are
used and the characteristics of each sources.
It can also contain a score, and settings
for different scenes (static constellations
of sources, between which the user can
switch).

Grid This contains the information about the
grid points used for early reflection calcula-
tion, as well as information about the im-
pulse responses (path and format in which
they are stored).

As a basis for the project file format we used
the XML-format for 3D audio as described in
[19]. Currently we are undertaking efforts to
start a discussion with other institutes that work
on Wave Field Synthesis to agree upon a com-
mon XML-format to be able to exchange con-
tent.

8 Working OSC commands

In table 1 an overview is given of the currently
working OSC commands.

8.1 Project

To be able to store scenes, you need to
create a new project with the command:
/WONDER/project/create, with one string as
argument: the project name.

You can save the project with the command:
/WONDER/project/save, and later load it again
with the command /WONDER/project/load.
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| command \ types | arguments
/WONDER/project/create s projectname
/WONDER/project/load s projectname
/WONDER/project/save s projectname
/WONDER/scene/add i scene no.
/WONDER/scene/select iff scene no., time, duration
/WONDER/scene/remove i scene no.
/WONDER/scene/set i scene no.
/WONDER/source/position | ifffff | srcid, pos x, posy, pos z, time, duration
/WONDER/source/angle ifff | srcid, angle, time, duration
/WONDER/source/type iiff | srcid, type, angle, time

Table 1: Working OSC commands

8.2 Scenes

You can create a snapshot of the current
source positions (called a “scene”) and store
them in the project, using the command
/WONDER/scene/add with an integer as argu-
ment for the slot number under which you want
to store the scene.

Later you can recall the scene with the com-
mand /WONDER/scene/select, with as argu-
ments the scene number, the time at which the
change to the scene should start, and the dura-
tion in which it should fade to the new scene.

With /WONDER/scene/remove a scene is
deleted (and thus the slot is freed again). With
/WONDER/scene/set you can overwrite an exist-
ing scene. Note the subtle difference between
adding a scene and setting a scene: adding cre-
ates a new scene and stores the current source
positions to it. It gives an error back when the
scene number already exists. “Set” stores the
current source positions to an existing scene and
gives an error back if the scene slot does not ex-
ist.

8.3 Source control

There are two types of sources: point source (see
fig. 8a) and plane wave (see fig. 8b).

With the command: /WONDER/source/type
you can set the type for one source. Plane wave
is “0”, point source is “1”. The angle argument
is the start angle for the plane wave. When-
ever the type is changed you should also send
a /WONDER/source/position command, to set
the position of the source. In the case of a point
source, this will be the actual position of the
source. In the case of a plane wave, this is a
reference point for the calculation; it should be
chosen to be a position somewhere behind the
array in the direction where the plane wave is
coming from. This point determines the basic

(a) Point source (b) Plane wave

Figure 8: Source types

latency of the plane wave.

/WONDER/source/position takes as argu-
ments the source id, the x and y position (in
meters), the z position (which should be 1.0 for
now), the time at which the change should start
(in seconds from “now”), and the duration for
the change to take place (also in seconds).

/WONDER/source/angle takes as arguments
the source id, the angle, the time at which the
change should start, and the duration for the
change to take place.

9 Conclusions

We have presented the new architecture of the
sWONDER software, with a focus on the central
control unit and the audio rendering unit. The
user interface of sSWONDER, a score player and
offline render unit are in development, to pro-
vide a full suite of open source tools for doing
WFS.

Parts of the software may also be useful for
other purposes, such as the OSC-controllable de-
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laylines and convolution engine.

We plan to extend the software with options
for other spatial reproduction techniques, such
as binaural headphone reproduction and am-
bisonics.

10
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