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ABSTRACT

Clock synchronisation is a mature and important aspect of
distributed computing systems. Despite the importance of
accurate timing in music, there are relatively few widely
applicable synchronisation solutions available to computer
music practitioners. In this paper we present a simple
OSC-based synchronisation method for wired and wireless
applications, which is designed to be easy to apply and is
shown to offer accuracy appropriate for fine-grained music
applications. The proposed solution relies on a single master
sending a synchronisation message to all slaves. Empirical
studies with a heterogeneous network of 17 Wi-Fi slaves and
5 Ethernet slaves demonstrate that each homogeneous group
is able to achieve a relative synchronisation accuracy of 166
us and 100 us respectively, offset from the master time by their
respective network latencies. An acoustic localisation system
is implemented to demonstrate an application that requires
both accurate synchronisation and benefits from wireless
connectivity. The system is shown to precisely locate a sound
source with a standard deviation of 1.8 mm.

1. INTRODUCTION

In networks of distributed computational devices, individual
network nodes are equipped with a local clock from which
events may be accurately scheduled or timestamped. In
practice this clock is derived from an on-board crystal or
oscillator circuit, which, due to imperfections in the timing
hardware, will tend drift with respect to the clocks on other
network nodes [1]. Scenarios demanding precise temporal
coordination have stimulated the development of many
synchronisation procedures designed to establish an accurate,
network-wide notion of time [2, 3]. Given the importance
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of timing and rhythm in music [4, 5], and the continually
emerging applications of networked computational devices
for musical purposes [6, 7, 8, 9, 10], there is a growing need
for a widely applicable synchronisation solution for computer
music applications.

This paper presents a simple Open Sound Control (OSC)
synchronisation procedure for distributed systems, which has
been designed to satisfy the following objectives:

• simple to implement on a wide range of platforms
(heterogeneous network nodes)

• ‘transport independent’ operating entirely through the
exchange of OSC messages

• meets the fine-grained synchronisation requirements of
computer music applications (i.e. sub-ms error [11])

The paper begins with an introduction to network
synchronisation with particular focus on computer music
systems. The proposed synchronisation method is then
presented, followed by a detailed empirical analysis and
discussion of its performance. A practical application
example of the synchronisation precision is then provided in
the form of a wireless indoor acoustic localisation system.
The paper closes with concluding remarks and proposals for
future developments.

2. BACKGROUND

Clock synchronisation is a long and established component of
distributed computing systems, underpinning the technology
that enables GPS, mobile telecommunications, wireless data
communications, networked file system integrity, sensor
fusion, localisation, object and motion tracking [1, 12].
The Network Time Protocol (NTP) [13] has for decades
kept internet clocks running to within a few milliseconds of
Universal Coordinated Time and now forms one of a plethora
of available synchronisation methods that have since been
proposed. Usually, these methods operate by propagating
a global or master time through the network from which
slaves modify their local clocks to maintain synchronisation.
The mechanisms of each synchronisation method differ based
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upon the the relevant network topology and the application
requirements in terms of accuracy, precision and energy.
Comprehensive overviews can be found in the literature, see
for example [14] and [15] for a more recent comparison of
synchronisation methods for wireless sensor networks.

Synchronisation has also played an important role in
distributed music systems to ensure audio and visual
media alignment. As technology has pervaded the sonic
and visual arts, a number of established synchronisation
protocols and interfaces have been proposed and adopted
that enable distributed devices to maintain a common
time frame. For example, MIDI clock, MIDI timecode
and SMPTE have provided reliable (although relatively
imprecise) device synchronisation for professional media
applications [16, 17]. Research into novel musical interfaces
and laptop/mobile phone performances are making increasing
use of interconnected networks of wired and wireless
devices to sense and capture expressive control input and
to schedule precisely timed output. For example, The
Princeton Laptop Orchestra [18], the Carnegie Mellon
Laptop Orchestra [19] and the LOLC laptop ensemble [20]
implement their own synchronisation algorithms to ensure
timely coordination amongst players. The former alludes
to an OSC synchronisation procedure with synchronisation
precision estimated in the order of 30-40 ms, while the latter
two incorporate messaging processes based upon Christian’s
algorithm [21]. A third live coding synchronisation process
developed by Ogborn [22] for the Cybernetic Orchestra
encapsulates the complexities of the synchronisation process
within a dedicated application called EspGrid, which exposes
global beat resolution event messages to clients running
OSC compatible music software. While this abstraction is
elegant for synchronising to salient musical events, it is not
designed to provide random access to the real-time clock,
precluding high-precision synchronisation applications such
as localisation and sensor fusion. In their 2014 live coding
report, Blackwell et al [23] draw attention to a growing
abundance of bespoke synchronisation methods noting that
cooperation is currently hampered by a lack of agreement on
a single protocol.

This work is concerned with cases in which many
established synchronisation protocols may not be applicable
because they depend upon specific physical interfaces or
other specific OSI model technologies such as TCP/IP. The
proposed synchronisation method is designed to operate in
situations where nodes are able to communicate by OSC and
have real-time access to an onboard physical clock. The
OSC protocol has been chosen as it has now become a key
technology within the computer music community [24]. The
time tag [25] argument type was introduced to the OSC
protocol as an enabling feature for device synchronisation.
Despite several subsequent calls for an OSC synchronisation
method [26, 27, 28], a standardised approach is still to be
established.

3. PROPOSED SOLUTION

3.1 Algorithm derivation

The proposed synchronisation solution relies on a single
synchronisation master periodically broadcasting a
measurement of global time to all slaves on a communication
network; a method resembling the ‘simple’ synchronisation
solution proposed by Dannenberg [29].

The synchronisation messages sent by the master provide
each slave with a precise observation of global time.
However, this observation will incorporate a varying error
due to the system latencies; the most significant being
communication latency, and task scheduling within the slave.
Figure 1 shows the error in the observed global clock for a
single slave. This plot was obtained for a Wi-Fi node using
the experimental setup described in Section 4.1 and a fixed
synchronisation message rate of 5 messages per second.

The visualisation of the error in the observed global clock
shown in Figure 1 clearly indicates a fixed minimum error.
Although errors may be as high as 30 ms, a significant
number of observations have a precise error of 2.2 ms. This
represents the minimum system latency, and corroborates
Wi-Fi round-trip latency measurements made with similar
devices in [30, 31].

The distribution of the error will vary between hardware and
software platforms, and communication interfaces. However,
for a network of homogeneous slaves, the minimum system
latency will be equal for all slaves. A slave may therefore
achieve relative synchronisation with other homogeneous
types if it is able to identify synchronisation messages that
are likely to represent the minimum system latency. The
proposed solution achieves this through the following three
heuristics:

1. The slave incorporates a fixed slave clock drift to
ensure that the slave clock is slower than the global
clock.

2. If the observed global clock is ahead of the current
slave clock then update the slave clock to equal the
observed global clock.

3. If the observed global clock differs from slave clock by
more than a specified threshold then update the slave
clock to equal the observed master clock.

The slave clock drift must be greater than the expected
worst-case relative difference in speed between the global
clock and slave physical clock. For example, if both the
global clock and slave clock are derived from a ±20 ppm
crystal then drift should be at least -40 us per second. The
threshold value should be greater than the expected maximum
communication latency so that the difference between the
slave clock and global clock only ever exceeds the threshold
upon initialisation of the system.

Figure 2 demonstrates the slave clock maintaining
synchronisation with a fixed offset from the global clock
using the above heuristics. This plot was obtained for a Wi-Fi
node using the experimental setup described in Section 4.1
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Figure 1. Error in the observed global clock for a single slave.
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Figure 2. Slave clock corrections based on observations of master clock

and a fixed synchronisation message rate of 5 messages per
second and slave clock drift of -10 us per second.

An important characteristic of the slave synchronisation
algorithm is that updates to the slave clock
(post-initialisation) will only ever result in steps forward in
time, an important condition that must be satisfied to ensure
partial ordering of events [32, 15].

3.2 Algorithm implementation

The synchronisation message sent by the master is a 20-byte
OSC message containing a single OSC time tag argument
with the address pattern, “/sync”. An OSC time tag is a
64-bit, unsigned fixed-point representation of time elapsed
since January 1, 1900 with a resolution of 233 ps. This is
also the representation used by NTP [25].

4. EMPIRICAL STUDIES

Empirical studies were conducted to demonstrate: the
relationship between the synchronisation message rate
and slave synchronisation error, the relationship between
application throughput and slave synchronisation error, and
the behaviour of a heterogeneous network of slaves.

4.1 Experimental setup

The experimental setup included 17 Wi-Fi slaves, 5 Ethernet
slaves, and a single Ethernet master. The Wi-Fi slaves were
x-OSCs [30] running customised firmware. The Ethernet
master and slaves were Microchip Ethernet Start Kits. All
devices communicated via a Netgear AC 1900 router. The
Ethernet master had a direct connection to the router while the
5 Ethernet slaves were connected to the router via a Netgear
GS308 Ethernet switch. The Wi-Fi slaves were connected to
the router 2.4 GHz network. A laptop was connected to the
router 5 GHz Wi-Fi network to log results without interfering
with the 2.4 GHz traffic. This setup is illustrated in Figure 3.

... ...

1 Hz Square Wave 

Wi-Fi Slaves (x17) Ethernet Slaves (x5)

Ethernet Master

Figure 3. Experimental setup showing a network of 17 Wi-Fi and 5 Ethernet
slaves with a single Ethernet master

A 1 Hz square wave signal was connected to a digital
input on the master and each slave. The digital inputs
were configured as external interrupts to send a time-stamped
OSC message indicating its clock value on each edge of the
square wave. The latency between the digital input edge and
sampling of the clock is <1.5 us. This provides a means of
sampling all clocks simultaneously so that the error of each
slave clock relative to global time may be obtained.

The Wi-Fi slaves were measured to have a small variance in
crystal tolerance and so used a slave clock drift value of -10
us per second. The Microchip Ethernet Start Kits used a slave
clock drift value of -150 us per second

4.2 Results

4.2.1 Synchronisation message rate vs. synchronisation
error

The box plots in Figure 4 shows the relationship between the
synchronisation message rate and the synchronisation error
of a single Wi-Fi slave. The synchronisation message rates
range from 1 message every 10 seconds to 100 messages
per second. Each box plot represents approximately 5300
samples over 45 minutes. The whiskers indicate 1.5×
interquartile range.

The distributions in Figure 4 demonstrate the predicable
relationship that higher synchronisation message rates yield
a reduced variance in the synchronisation error and shift
the mean towards to minimum system latency. Outliers
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Figure 4. Relationship between the synchronisation message rate and the
synchronisation error of a single Wi-Fi slave

define the peak-to-peak variation and so indicate the potential
worst-case synchronisation error. The peak-to-peak variation
was measured as 149 us at 0.1 Hz, 50.6 us at 5 Hz, 26.5 us at
50 Hz and 26.2 us at 100 Hz.

The relationship between the synchronisation message rate
and synchronisation error allows the designer to optimise for
a given application. For high-bandwidth applications, a high
message rate may achieve a synchronisation error (between
homogeneous slaves) approaching sample accurate timing
for CD quality audio (22.7 us sample period at 44.1 kHz).
For low-bandwidth or low-power applications, message rates
as low as once every 10 seconds may still achieve a low
peak-to-peak variation of <150 us.

4.2.2 Application throughput vs. synchronisation error

Synchronisation messages place an additional demand on
the bandwidth of a communication channel. The box plots
in Figure 5 show the relationship between the application
throughput and the synchronisation error of 17 Wi-Fi slaves.
The application throughput was created by each slave
sending an additional 0, 50, 100 or 200 UDP packets per
second. Each packet contained a 104-byte OSC message
containing 16 analogue input measurements represented as
32-bit floating point values. The synchronisation message
rate was 5 messages per second. Each box plot represents
approximately 30000 samples collected over 15 minutes.

The distributions in Figure 5 demonstrate that
synchronisation error can be expected to increase for
high application throughput. This is in part due to a reduction
in the available bandwidth of the communication channel
and in part due to the increased loading on the slaves’ task
scheduling. The peak-to-peak variation was measured as 117
us at 0 Hz, 159 us at 50 Hz, 218 us at 100 Hz and 376 us at
200 Hz.

4.2.3 Heterogeneous network of slaves

The proposed synchronisation solution is limited to only
achieving accurate synchronisation of slaves of homogeneous
types; each group of homogeneous types will be subject
to different error offset approximating the minimum system
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Figure 5. Relationship between application throughput and Wi-Fi slave
synchronisation error

latency for the type. The box plots in Figure 6 demonstrate
this behaviour for two groups of homogeneous types: the 17
Wi-Fi slaves and the 5 Ethernet slaves. Each distribution
represents approximately 53000 samples collected over 9
hours with a synchronisation message rate of 5 messages per
second.
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Figure 6. Synchronisation error of 22 heterogeneous slaves. Slaves A to Q
are Wi-Fi nodes, slaves R to V are Ethernet nodes (slave D malfunctioned
during the experiment)

A faster and more reliable connection enables the
Ethernet slaves to achieve a lower variance with a mean
synchronisation error of -125 us relative to the global
clock. Although the 17 Wi-Fi nodes maintain relative
synchronisation, they share a common mean synchronisation
error of -2.37 ms relative to the global clock. The worst-case
synchronisation error between any Wi-Fi slaves was 166 us,
and 100 us for any two Ethernet slaves over the 9 hour period.

5. EXAMPLE APPLICATION: ACOUSTIC
LOCALISATION

An acoustic localisation system was implemented to
demonstrate an application that requires both accurate
synchronisation and benefits from wireless connectivity. The
system comprises eight wireless sensing nodes distributed

ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas

– 221 –



around the edge of a workspace. The location of a sound
source within the workspace was calculated from the relative
time-of-arrival of the sound at each sensing node using
multilateration [33]. The accuracy of the location is therefore
dependant on the accuracy of the synchronisation. Wireless
connectivity simplifies deployment of the sensing nodes over
a large workspace.

5.1 Wireless sensing node

Each wireless sensing node comprised an x-OSC, audio
trigger circuit and battery. The x-OSC digital inputs provide
a timestamped OSC message for each rising or falling edge.
The audio trigger circuit would provide a digital pulse when
a microphone amplitude exceeds a threshold so that the time
of arrival of a sound would be obtained. The threshold was
set by an x-OSC PWM output so that it could be adjusted
wirelessly, via OSC messages, once the system had been
deployed.

The audio trigger circuit, shown in Figure 7, was designed
to minimise variations in latency between sensing nodes.
The signal from an omni-directional electret microphone,
multiplied by a gain of ∼1400, was compared with both a
positive and negative threshold of equal magnitude to prevent
sensitivity to the polarity of the wave form. The circuit does
not incorporate any intentional low-pass filtering (e.g. an
anti-aliasing filter) as resistor and capacitor value tolerances
may risk a differing phase response between devices.

Figure 7. One of eight wireless sensing nodes with attached audio trigger
circuitry

5.2 Deployment and results

The eight sensing nodes were equally spaced around the
perimeter of a 6 m square. The synchronisation message
rate was set to 50 messages per second to optimise for
synchronisation accuracy. A loudspeaker was placed at five
different locations within the square. The speaker would play
a 15 ms noise burst 100 times at each location over 3 to

4 minutes. The microphone and loud speaker locations are
illustrated in Figure 8. The locations of the speaker in this
Figure were obtained using the acoustic localisation system.
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Figure 8. Eight sensing nodes were equally spaced around the perimeter of
a 6 m square to obtain measurements of five different speaker locations using
multilateration

The standard deviation in the measured locations of the
speaker was <8 mm. It was not possible to quantify the
mean error of each measured location as the accuracy of
the acoustic localisation measurement was greater than that
of the measurement made when physically setting up the
experiment. The precision was greatest when the speaker was
located in the centre with a standard deviation of 1.8 mm,
corresponding to a temporal error of 2.6 us. Figure 9 shows a
detailed plot of the 100 measurements made at this location.
These measurements suggest that the speaker was placed with
3 cm error in one dimension. This precision demonstrates the
accuracy of the synchronisation.

6. CONCLUSIONS

In this paper we have presented a simple distributed
computing synchronisation method for OSC. The method
relies on a single master sending a synchronisation message
to all slaves. The synchronisation algorithm has only
three adjustable parameters: slave clock drift, threshold,
and synchronisation message rate. The first two are
straightforward to derive from the crystal tolerance and
worst-case communication latency. The synchronisation
message rate may be chosen to meet the requirements of
a given application. For example, the empirical studies in
Section 4 demonstrate a synchronisation precision of <150 us
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Figure 9. Detailed view of acoustic localisation measurements for the
speaker located at the centre of the square

for a message rate of 0.1 Hz, and 26.5 us for a message rate of
50 Hz. Low message send rates are necessary for low-power
and low-bandwidth applications. High message rates are
appropriate for applications demanding greater precision,
such as the acoustic localisation system demonstrated in
Section 5.

The experimental work in this paper focused on Wi-Fi and
Ethernet implementations. However, the proposed solution
may be implemented on any communication network that
supports OSC. Synchronisation accuracy will vary between
different communication networks and types of slave as was
shown in Section 4.2.3 for the heterogeneous network of
Ethernet and Wi-Fi slaves, which showed a fixed offset
between each homogeneous group. Many applications will
use only homogeneous slave types and so can benefit from
greater relative synchronisation accuracy as demonstrated by
the 166 us error achieved for the 17 Wi-Fi nodes in Section
4.2.3.

Future work will explore methods of compensating for
differing physical clock speeds and estimation of the fixed
offset in synchronisation error from the global clock.
Methods to address the susceptibility of the method to
synchronisation loss if the clock master node fails are also
under investigation.
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