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4.32.1 Introduction
This chapter treats the topic of sound field synthesis in the context of creation of virtual acoustic
environments. The latter as well as the corresponding rendering methods are introduced in this section.
Then the organization of this chapter is presented.

4.32.1.1 Virtual acoustic environments
The term virtual environment is not well defined and used in a variety of ways. Nevertheless, two aspects
appear to be common to all approaches: From the technical viewpoint, virtual environments are created
by the convergence of different multimedia technologies. From a user perspective, virtual environments
create a sense of immersion, where users perceive no more single displays or loudspeakers but the
complete audiovisual scene as an entity.

The prevalent multimedia technologies in virtual environments are video and audio reproduction,
where mass-produced hardware and media standards are available. These are sometimes complemented
by more experimental devices like data gloves, head-mounted displays, haptic interaction, or alike.

Virtual environments are applied in the entertainment industry for movie reproduction in different
formats and for games, in communications for teleconferencing, and in simulation for the evaluation of
the design of buildings and machines, for operator training, etc.

The term virtual environment is often used for advanced video technologies only, while sound is
considered as an add-on to support the visual content. In contrast, the focus lies here explicitly on the
creation of acoustic virtual environments. They may be used for audio reproduction in its own right or
in conjunction with video reproduction.

The technologies for creating acoustic virtual environments can be roughly classified into head
related methods and room related methods [1]. Head related methods attempt to create the proper
acoustic signals at both ears of one listener. The set of methods employed for this purpose is called
binaural technology. They are addressed briefly in the beginning of Section 4.32.1.2.

Room related methods establish a sound field within a room where one or more listeners can sit or
walk around. A classical approach is to pan a sound source between one or more pairs of loudspeakers
like in two-channel stereo and extensions thereof. More recent approaches to sound field synthesis apply
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916 CHAPTER 32 Sound Field Synthesis

a high number of reproduction channels which are treated as spatial samples of a continuous source
distribution around the listening area [2]. Finally, the theory of multiple-input, multiple-output systems
gives rise to the family of multipoint methods. Section 4.32.1.2 reviews aspects of these room related
approaches.

From all room related methods, the approaches to sound field synthesis are closest to the reproduction
of the physically correct sound field. Their presentation constitutes the main focus of this chapter.

4.32.1.2 Rendering of virtual acoustic environments
The technical process of creating an acoustic virtual environment is also called rendering in parallel
to the rendering of visual scenes on video displays. Some aspects of head related and room related
rendering methods are briefly reviewed here. The presentation starts with a glimpse on head-related
transfer functions. Then various panning methods from classical stereo reproduction to more recent
approaches are discussed. Sound field synthesis is put in perspective to the other room related methods
here, but the resulting rendering methods are discussed in more depth in the remainder of the chapter.
The overview on room related methods is concluded by a review of multipoint methods.

4.32.1.2.1 Reproduction based on head-related transfer functions
The human auditory system exploits the acoustic characteristics of the outer ear in order to perform
spatial scene analysis [3]. The outer ear includes the pinnae, head and upper torso. The acoustic properties
from the outer ear can be captured by measuring the transfer function from an acoustic source to
a defined position in the ear canal of both ears. These functions are known as head-related transfer
functions (HRTFs) and are individual for one person. HRTFs are measured in anechoic, reverberant or
simulated environments. Virtual sound sources are created by filtering the signal of the virtual source
by the its left and right ear HRTF, and reproducing the resulting signals via headphones in order to
have independent control over the signals at the two eardrums. For proper auralization also the transfer
function of the headphone has to be compensated for. This reproduction method is sometimes also
referred to as binaural reproduction.

The HRTFs depend on the position of the listener’s ears, the position of the acoustic source, the
acoustic properties of the source and the environment. Hence, a database of HRTFs is required that covers
all potential parameters. In order to limit the effort, often only the head orientation in the horizontal
plane for one listener and source position is taken into account. For auralization, the head orientation
has to be tracked and the corresponding set of HRTFs has to be applied. A head tracked system is
typically termed as dynamic binaural reproduction system. The benefit of binaural reproduction is its
low complexity in conjunction with the high spatial quality that can be achieved by a well designed
system. Drawbacks are that HRTFs are listener dependent and that binaural reproduction gets complex
for multiple listeners since head-tracking and appropriate HRTF databases are required for each listener
(position). Furthermore, the reproduction via headphones decouples the listener from their environment
so that e.g., the communication with other people in the same room becomes unpleasant.

Binaural reproduction can also be performed via loudspeakers. Here, an appropriate crosstalk can-
cellation [4] has to be employed in order to control the signals at both ears of the listener independently.
Crosstalk cancelation typically exhibits a very pronounced sweet spot and is likely to produce strong
artifacts at positions some few centimeters from the sweet spot.
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4.32.1 Introduction 917

4.32.1.2.2 Panning approaches
Panning approaches apply amplitude differences (and/or time delays) to a low number of loudspeakers
(typically a pair, triple, or quadruple) in order to create the impression of phantom sources. Stereophony
is the most widespread variant of these approaches which is based on the use of a pair of loudspeakers.
However, generalizations of the basic concept have been developed like e.g., vector base amplitude
panning (VBAP) [5] and Ambisonics amplitude panning (AAP) [6]. Although all these techniques are
partly physically motivated, it is agreed nowadays that their success can be exclusively attributed to
psychoacoustic properties of the human auditory system.

A number of studies have been conducted in order to clarify the perception of Stereophony, see e.g., [7]
for references. The assumed underlying psycho-acoustical mechanism is termed summing localization,
e.g., [7, p. 9] and [3, p. 204]. Summing localization refers to the superposition of (typically a low
number of) sound fields carrying sufficiently coherent signals impinging at a time interval smaller than
approximately 1 ms. It is assumed that the superposition of the sound fields at the listener’s ears leads
to summed signals, the components of which can not be discriminated by the human hearing system.
An extension of the concept of summing location is Theile’s association theory published ibidem.

Panning approaches are typically realized by applying weights (and/or delays) to each loudspeaker
according to a given panning law. These panning laws are derived by either considering the physics of the
problem (e.g., the sine law) or by psychoacoustic experiments. A major benefit of panning approaches
is their low complexity. However it is well known, that they exhibit a very pronounced sweet spot and
that the impression of a phantom source at lateral and rear positions is unreliable for typical setups [5].
Outside of the sweet spot, the spatial impression is heavily distorted and also some impairment in terms
of sound color may occur [7]. Hence, these techniques are only suitable for small audiences if spatial
sound reproduction with high resolution is desired.

4.32.1.2.3 Sound field synthesis
In order to provide the potential of satisfying a significantly larger receiver area that above mentioned
approaches allow for, methods have been proposed that aim at the physical synthesis of a given sound
field. These methods are termed sound field synthesis [2].

The problem of sound field synthesis may be formulated in words as follows:
A given ensemble of elementary sound sources shall be driven such that the superposition of the

sound fields emitted by the individual elementary sound sources best approximates a sound field with
given desired properties over an extended area.

Such an extended area may be a volume or a surface. The employed elementary sound sources will be
termed secondary sources in the remainder of this chapter [8, e.g., p. 106]. In practical implementations,
loudspeakers will be used as secondary sources. The term “secondary source” has been established in
the context of scattering problems where the influence of a given object on an incident field is described
by a distribution of secondary sources that are located along the surface of the object and that replace
the latter, e.g., [9].

In order to facilitate the mathematical treatment and in order to facilitate the exploitation of results
that have been achieved in closely related problems such as acoustical scattering [9], the ensemble of
secondary sources under consideration will be assumed to be continuous and will therefore be referred
to as a distribution of secondary sources.
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918 CHAPTER 32 Sound Field Synthesis

Three basic analytic approaches have been proposed in the literature based on the framework out-
lined above. They are termed Near-field Compensated Higher-Order Ambisonics (NFC-HOA), Spectral
Division Method (SDM), and Wave Field Synthesis (WFS), respectively, and they will all be presented
later in this chapter.

4.32.1.2.4 Multipoint approaches
The approaches to sound field synthesis introduced so far are based upon a spatially continuous for-
mulation of the underlying physical problem. The spatial sampling is typically introduced at a later
stage into the driving function. Besides these approaches a number of approaches exist that are based
on a spatially discrete formulation of the problem. The published approaches differ in terms of their
discretization scheme and signal domain in which the problem is formulated. Most of the approaches
assume a spatially discrete secondary source and receiver distribution. Typically a number of receiver
points are defined which are located around or within the desired listening area. The pressure field of the
virtual source should be synthesized as accurately as possible at these points by a weighted combination
of the secondary sources. This is often formulated in terms of a matrix equation that can be understood
as a discretized version of the synthesis equation (32.134) that constitutes the starting point for all
analytic approaches. The desired pressure at the defined receiver points and the driving function for
the secondary sources are combined into vectors. The acoustic paths from all secondary sources to all
receiver points are characterized by a matrix of transfer functions. The resulting set of linear equations
in form of a matrix equation is then solved with respect to the vector of driving functions. Typically
least-square error (LSE) approaches are used. The basic scheme or variants are formulated either in
the time domain, in the frequency domain [10], or in terms of spherical harmonics [11]. For the latter
methods often only the secondary source distribution is explicitly spatially sampled. The traditional
formulation of Higher Order Ambisonics [12] is a prominent example.

The properties of the multipoint approaches are typically somewhere between NFC-HOA, SDM,
and WFS and depend heavily on the number of secondary sources, receiver points and their spatial
configuration.

The major benefit of the multipoint methods are the potentially very flexible loudspeaker layouts for
which an approximate (least-squares) solution can be found. As for the solution of the integral equation
(32.134), also the solution of the matrix equation in the multipoint approach poses an inverse problem
in acoustics. It is well known that in practice these are often ill-conditioned at high frequencies and
the result therefore becomes unpredictable [13]. Besides this problem, the drawbacks of the multipoint
approaches are numerical complexity and that they provide only little insight into fundamental properties
of the reproduced sound field.

4.32.1.3 Organization of this chapter
The remainder of this chapter discusses methods for sound field synthesis. It starts with the foundations
from physics that lead to the acoustic wave equation in Section 4.32.2. Then the focus shifts from sound
waves to signals that carry space-time information and their representations in different coordinate
systems and in the frequency domain in Section 4.32.3. The response to sound sources and its description
by the Green’s function is presented in Section 4.32.4. Section 4.32.5 continues with the Kirchhoff-
Helmholtz integral equation as the physical foundation of sound field synthesis.
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4.32.2 Acoustic Wave Equation 919

The following sections present three distinct methods for sound field synthesis: Near-field Compen-
sated Higher Order Ambisonics in Section 4.32.6, the Spectral Division Method in Section 4.32.7, and
Wave Field Synthesis in Section 4.32.8. These sections share a common structure: a description of the
rendering method on the basis of a continuous source distribution, the introduction of discrete loud-
speaker positions by spatial sampling and application examples, and extensions of the basic principle.

4.32.2 Acoustic wave equation
The acoustic wave equation is introduced here at first in a coordinate free representation. Then those
coordinate systems are presented which are most frequently used for the description of sound fields.

4.32.2.1 Coordinate free representation
Detailed derivations of the acoustic wave equation can be found in many classical and modern books
on acoustics [14–20]. A concise derivation with a clear indication of the involved assumptions and
simplifications is found e.g., in [19]. Therefore only a few remarks on the underlying physical principles
are given here.

The description of wave propagation in a fluid involves three field quantities, the sound pressure
p(x, t), the particle velocity v(x, t), and the mass density �(x, t). They depend on the space coordinate
vector x and on time t . Three different relations for each pair of variables can be established from the
first principles of physics:

• the conservation of mass which links the mass density �(x, t) and the particle velocity v(x, t),
• the equations for the thermodynamical state of the fluid involving the mass density �(x, t) and the

pressure p(x, t),
• the equation of motion (Newton’s second law) for the sound pressure p(x, t) and the particle velocity

v(x, t).

Figure 32.1 shows the interrelations between these three field quantities and the governing physical
laws in graphical form.

sound pressure
p(x, t)

Newton’s
2nd law

material
properties

particle velocity
v(x, t)

conservation
of mass

mass density
(x, t)

FIGURE 32.1

Fundamental physical principles for the description of sound propagation.
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The propagation medium for sound waves is assumed to be air at standard conditions. It can be
regarded as an ideal gas for the purpose of room acoustics and for audible frequencies. This assumption
simplifies the relations for the thermodynamical state to the extent that variations in the mass density
can be expressed by variations of the sound pressure. Then the mass density � can be eliminated such
that two expressions for the sound pressure p and the particle velocity v remain.

One relation results from the conservation of mass and the assumption of an ideal gas. It establishes
the relation between the compression of the air and the velocity gradient

1

c2

∂p(x, t)

∂t
+ �0∇v(x, t) = 0. (32.1)

Here �0 denotes the static density of the air and c the sound speed.
The other relation is Newton’s second law in differential form (Euler’s law). It links the gradient of

the sound pressure p(x, t) and the acceleration of the air particles

∇ p(x, t) + �0
∂v(x, t)

∂t
= 0. (32.2)

Finally the scalar homogeneous wave equation is obtained by eliminating the vector of the particle
velocity v from (32.1) and (32.2). Taking the partial time derivative of (32.1) and the gradient of (32.2)
results in

∇2 p(x, t) − 1

c2

∂2 p(x, t)

∂t2 = 0. (32.3)

The square of the Nabla-Operator for the spatial derivative ∇2 = � is the Laplace operator. It takes
different forms depending on the chosen coordinate system.

4.32.2.2 Coordinate systems
4.32.2.2.1 Introduction
The ability to convert between different systems of coordinates allows to find the most suitable one for
a given problem. In many cases it is possible to exploit certain spatial symmetries of typical wave fields
and to use a coordinate system which reflects these symmetries in the most simple way. An example is
the use of spherical coordinates for the sound field of a single point source (acoustic monopole). The
radial symmetry of the problem leads to a sound field which is constant with respect to the azimuth and
zenith angle of spherical coordinates. In other cases, the choice of the coordinate system is induced by
the shape of the enclosure. The wave propagation in a cylindrical pipe like the bore of a wind instrument
is an example for the favorable use of cylindrical coordinates. Aligning the longitudinal axis with the
center of the bore brings the walls of the enclosure to a constant value of the radial axis. The following
section gives a short overview on frequently used coordinate systems.

4.32.2.2.2 Overview on frequently used spatial coordinate systems
A schedular overview on the most frequently used spatial coordinate systems is given in Table 32.1.

Cartesian coordinates are most frequently used when no inherent spatial structure of a spatial region
of interest is given. An example are world coordinates for general audiovisual scenes in virtual reality.
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4.32.2 Acoustic Wave Equation 921

Table 32.1 Frequently Used Coordinate Systems in Two and Three Spatial Dimensions

Two-dimensional Three-dimensional

Cartesian Cartesian
Polar Cylindrical

Spherical

Cartesian coordinates allow object and viewpoint manipulations like translation or rotation with simple
linear transformations. Also the transition between spatially two-dimensional and three-dimensional
representations is easily accomplished by projections from 3D to 2D.

Cartesian coordinates are also the most suitable choice for spatial structures with linear or planar
shape. Examples are shoebox models of acoustic spaces for simplified analytical modal investigations or
for the mirror image source method in room acoustics. Another natural choice for Cartesian coordinates
are line or planar arrays of microphones or loudspeakers, where the alignment of the spatial structure
with the coordinate axes is obvious.

For user centric systems, polar or spherical coordinate systems are more suitable. They define
acoustic events relative to a listener who resides naturally in the center of the coordinate systems. Sound
sources are then defined by their distance and by their azimuth and zenith angles in the 3D case. For
sound events in a horizontal plane around the listener’s ears, a 2D polar coordinate system is often
sufficient.

Polar and spherical coordinates are frequently used to describe source localization and for the defi-
nition of head related transfer functions (HRTFs). The Ambisonics sound reproduction method is based
on a sound field description with spherical harmonics.

Cylindrical coordinates are suitable for the descriptions of cylindrical waveguides. They are used
in musical acoustics to describe woodwind instruments, organ pipes and alike. In sound reproduction,
cylindrical coordinates are of theoretical value to describe the transition between 3D and 2D descriptions
of sound fields.

4.32.2.2.3 Cartesian coordinates
In Cartesian coordinates the three-dimensional space coordinates are denoted by

x =
⎡
⎣ x

y
z

⎤
⎦ . (32.4)

The Cartesian coordinates for two dimensions are given in the same way for z = 0.
The Laplace operator in Cartesian coordinates consists of the second order derivatives calculated

along each orthogonal spatial dimension

∇2 = � = div grad = ∂2

∂x2 + ∂2

∂ y2 + ∂2

∂z2 . (32.5)
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FIGURE 32.2

Spherical coordinates.

4.32.2.2.4 Spherical coordinates
Spherical coordinates specify the distance r from the origin, an azimuth angle α in the horizontal plane
and a zenith angle β for the elevation, see Figure 32.2. Spherical coordinates are expressed in terms of
Cartesian coordinates as

x =
⎡
⎣ x

y
z

⎤
⎦ = r

⎡
⎣ cos α sin β

sin α sin β

cos β

⎤
⎦ , (32.6)

with the inverse relations

r2 = |x|2 = x2 + y2 + z2, (32.7)

tan α = y

x
, (32.8)

cos β = z

r
, (32.9)

and the vector notation

r =
⎡
⎣ r

α

β

⎤
⎦ . (32.10)

The Laplace operator in spherical coordinates is given by

� = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin β

∂

∂β

(
sin β

∂

∂β

)
+ 1

r2 sin2 β

∂2

∂α2 . (32.11)
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α

r

FIGURE 32.3

Polar coordinates.

The second order partial differentials can be written in different ways. For example the first term may
appear as

1

r2

∂

∂r

(
r2 ∂

∂r
p(r)

)
= ∂2

∂r2 p(r) + 2

r

∂

∂r
p(r) = 1

r

∂2

∂r2 (r p(r)). (32.12)

The equivalence of these three expressions is shown with the chain rule and the product rule of differ-
entiation.

4.32.2.2.5 Polar coordinates
Polar coordinates in space are a two-dimensional representation for the distance r from the origin and
a rotation by the angle α (see Figure 32.3). They correspond to the spherical coordinates with β = π

2 .
The relations to the two-dimensional Cartesian coordinates are given by

x =
[

x
y

]
= r

[
cos α

sin α

]
, (32.13)

with the inverse relations

r2 = |x|2 = x2 + y2, (32.14)

tan α = y

x
. (32.15)

For a concise notation, the polar coordinates are also arranged in vector fashion

r =
[

r
α

]
. (32.16)

The Laplace operator in polar coordinates is given by

� = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂α2 . (32.17)
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4.32.3 Signal representations
This section provides links between the physical quantities of the acoustic wave equation and between
multidimensional signals and their numerous representations. These representations distinguish between
signals in the time and space domain and between signals in the associated frequency and wavenumber
domains. Furthermore, space- or wavenumber-dependent signals in two or three spatial dimensions can
be represented in various spatial coordinate systems.

The resulting multitude of different signal representations is not easy to handle with regards to
the mathematical notation. This chapter follows the good practice in signal processing to distinguish
between signals in time, frequency, and possibly other domains. The corresponding notational details
are introduced in due course. They include small and capital letters, subscripts and superscripts, the
tilde and other graphemes, although such signal “decorations” are sometimes deemed superfluous in
the literature on acoustics (see e.g., [21, Section A.3]).

4.32.3.1 Introduction
The discussion of the acoustic wave equation in Section 4.32.2 relied on the sound pressure and the
particle velocity as physical quantities. They served to establish fundamental relations like conservation
of mass or Newton’s law of motion. However, for the purpose of sound rendering, also another aspect
of these quantities is of importance. The temporal and spatial variations of the sound pressure carry
information from a sound source to the listeners. This information may be explicit such as speech or
musical notes or it may be implicit such as perceived genre or timbre. In any way, the sound pressure
governed by the acoustical wave equation is not only a physical quantity but also a signal in the sense
of communications. While Section 4.32.2 considered the sound pressure as a physical quantity, this
section and the following ones emphasize the signal character.

Signals in communications are mostly one-dimensional and time dependent, e.g., the varying voltage
received by an antenna or picked up by a microphone. Signals of this kind are not only represented by their
temporal variations but also—equivalently—by their frequency content. The connection between the
time and the frequency domain is either provided by the phasor approach or by integral transformations
like the Fourier or the Laplace transformation.

• The phasor approach considers monofrequent signals of the form

u1(t) = Ueiω1t (32.18)

with the imaginary unit i , the angular frequency ω1, and the complex amplitude U . The signal u1(t)
depends on the time variable t while the angular frequency ω1 is an arbitrary but fixed parameter.
Different values of ω1 define different signals u1(t). To indicate clearly the different nature of time
and frequency, the fixed angular frequency carries the index 1 and the function u1(t) shares the same
index.

• The transformation approach works with the equivalence of a signal and its spectrum

u(t) ◦––• U (ω). (32.19)
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4.32.3 Signal Representations 925

The transformation symbol ◦––• is a shorthand notation for the Fourier transformation U (ω) =
F {u(t)}. A formal definition is given in Section 4.32.3.3. Here the Fourier transform U (ω) depends
on the frequency variable ω. As a free variable, ω is not indexed.

For signals which depend only on time the dual character of a signal and its spectrum in the form
of (32.19) is quite simple and easy to handle. This situation is different for the sound pressure p(x, t)
which depends on time and space and thus constitutes a multidimensional signal. Therefore two different
transformations are required, one for the time and one for the space variable. The latter has to consider
the number of spatial dimensions. In addition the nature of the spatial transformation depends on the
chosen spatial coordinate system (Cartesian, polar, spherical).

These different representations are introduced now as extensions of the well-known phasor concept.
It turns out that its generalization to time- and space-dependent signals leads to another basic concept,
the so-called plane wave. This extension of the phasor approach to the sound pressure is presented in
Section 4.32.3.2. Section 4.32.3.3 introduces the set of transformations required for space variables in
Cartesian coordinates. Extensions to two-dimensional spatial problems in polar coordinates are given in
Section 4.32.3.4 and to three-dimensional spatial problems in spherical coordinates in Section 4.32.3.5.

4.32.3.2 The phasor approach for the wave equation
4.32.3.2.1 One-dimensional phasors
Phasors are eigenfunctions of one-dimensional linear and time-invariant (LTI) systems. They are signals
of the form

u1(t) = U (ω1)e
iω1t (32.20)

with the angular frequency ω1 and the complex amplitude U as in (32.18). The response of an LTI-
system with the complex frequency response H(ω) to a phasor with the amplitude U = 1 is also a
phasor with a complex amplitude H(ω1) and the same angular frequency, see Figure 32.4.

The frequency response H(ω) is a function of the angular frequency ω. When the corresponding
system is excited by a monofrequent signal then only its value H(ω1) at the excitation frequency ω1
determines the output signal.

4.32.3.2.2 Multidimensional phasors
The analysis of space-time systems requires to extend the phasor concept to multiple dimensions. Similar
to (32.20), a phasor for a system depending on time t and space x has the form

u01(x, t) = Ũ (k0, ω1)e
i(ω1t+kT

0 x). (32.21)

Again, ω1 is the angular frequency with respect to time. Its counterpart with respect to space is the
wave vector k0 which is of the same dimension as the vector of space coordinates x. Similar to the

eiω1t H(ω) H(ω1)eiω1t

FIGURE 32.4

Response of an LTI-system to a phasor.
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Real part of the (1+1)D multidimensional phasor u01(x , t) from (32.21). The figure clearly shows the peri-
odicity both in time and space.

one-dimensional phasor, the angular frequency ω1 and the wave number k0 are fixed values and denoted
by an index. The tilde in Ũ (k0, ω1) indicates that Ũ is a function of both spatial and temporal frequencies.

The wave vector k0 can be expressed by its magnitude, the wave number k0, and the unit length
vector n0 as

k0 = k0n0 with k0 = |k0| and n0 = 1

k0
k0. (32.22)

Due to the periodicity of the complex exponential function in (32.21), also u01(x, t) is periodic both in
time and space

u01(x, t) = u01(x + λ0n0, t + T1), (32.23)

with the period T1 and the wavelength λ0

T1 = 2π

ω1
, λ0 = 2π

k0
. (32.24)

This periodicity is obvious from Figure 32.5 for one spatial dimension, where only the real part
cos (ω1t + k0x) is shown.

4.32.3.2.3 Multidimensional phasors and the acoustic wave equation
For sound rendering, the relation of multidimensional phasors to the acoustic wave equation is of special
interest. It turns out that the multidimensional phasors of the form of (32.21) are solutions of the wave
equation, if certain relations between angular frequency and wave number hold. To see these relations,
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4.32.3 Signal Representations 927

insert (32.21) into the acoustic wave Eq. (32.3). Carrying out the derivations with respect to time and
space gives [

k2
0 −

(ω1

c

)2
]

u01(x, t) = 0. (32.25)

There exists a nontrivial solution u01(x, t) only iff

ω1 = ±c k0. (32.26)

This close tie between the angular frequencies ω1 and k0 of the multidimensional phasor is imposed by
the acoustic wave equation. It is called the dispersion relation.

4.32.3.2.4 Physical interpretation of multidimensional phasors
A closer look at u01(x, t) under the restriction (32.26) shows that u01(x, t) = const for

nT
0 x ± ct = const. (32.27)

For each of the two signs, (32.27) describes a plane in space which propagates with the speed c in or
against the direction of the normal vector n0 as shown in Figure 32.6. Therefore a solution of the wave
equation with the arbitrary complex amplitude P̃

p01(x, t) = P̃(k0, ω1)e
i(ω1t+kT

0 x) (32.28)

−4
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−4

−2
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6 n0

x
y

z

FIGURE 32.6

Plane in space which propagates with the speed c in the direction of the normal vector n0.
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is called a plane wave or due to its complex exponential nature also a harmonic plane wave.
Physics-oriented texts sometimes emphasize the analogy to monofrequent light by the designation
monochromatic plane wave. With the dispersion relation (32.26), the plane wave can be written in
various forms (P̃ = 1)

p01(x, t) = ei(ω1t+kT
0 x) = eik0(ct+nT

0 x) = eiω1(t+ 1
c nT

0 x). (32.29)

The periodicity of the plane wave in time and space is reflected by the periodicity of the complex
exponential either in dimensionless variables ω1t and kT

0 x0, with respect to time, or with respect to
space, as shown in (32.29)

p01(x, t) = p01(x, t + T1) = p01(x + λ0n0, t)

= ei(ω1t+kT
0 x) = eiω1(t+T1+ 1

c nT
0 x) = eik0(ct+nT

0 x+λ0). (32.30)

4.32.3.3 Fourier transformations in time and space
The phasor concept introduced in Section 4.32.3.2 does not only describe monofrequent signals and
plane waves in an elegant way. It provides also the link to general kinds of signals and their spectral
representations with respect to time and space. These relations are first established for the Fourier
transformation with respect to time and then with respect to space.

4.32.3.3.1 Fourier transformation with respect to time
Consider the one-dimensional phasor u1(t) from (32.20)

u1(t;ω1) = U (ω1)e
iω1t (32.31)

which describes a monofrequent signal with angular frequency ω1. Since the complex amplitude U may
vary with different angular frequencies, it is written here as a function of ω1. Furthermore, ω1 is added
as parameter to the list of variables in u1(t;ω1). Variables and parameters are separated by a semicolon.

A general time dependent signal u(t) can be regarded as a superposition of monofrequent signals
u1(t;ω1) with different angular frequencies ω1 from the range −∞ < ω1 < ∞ with different corre-
sponding complex amplitudes U (ω1)

u(t) = 1

2π

∫ ∞

−∞
u1(t;ω1)dω1 = 1

2π

∫ ∞

−∞
U (ω1)e

iω1t dω1. (32.32)

The special property of the complex exponential function

1

2π

∫ ∞

−∞
ei(ω1−ω)t dt = δ(ω1 − ω) (32.33)

allows to invert the relation (32.32) as∫ ∞

−∞
u(t)e−iωt dt =

∫ ∞

−∞
U (ω1)δ(ω1 − ω)dω1 = U (ω). (32.34)
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u1(t; ω1) 2π U (ω1) δ(ω1 − ω)

u(t) U (ω)

1
2π

dω1
1

2π
dω1

t

t

FIGURE 32.7

Representation of the Fourier transformation in time as integration of a phasor with respect to angular
frequency ω1.

Equations (32.32) and (32.34) constitute the Fourier transform pair

U (ω) = Ft {u(t)} =
∫ ∞

−∞
u(t)e−iωt dt, (32.35)

u(t) = F−1
t {U (ω)} = 1

2π

∫ ∞

−∞
U (ω)eiωt dω. (32.36)

The subscript t in Ft denotes the Fourier transformation with respect to time. Its relation to the one-
dimensional phasor by an integration with respect to frequency is shown in Figure 32.7. The Fourier
transform of the phasor in the upper right corner follows from the orthogonality (32.33). The derivation of
this well-known relation is presented here as an introduction to the more involved Fourier transformation
with respect to space.

4.32.3.3.2 Fourier transformation with respect to space
Similar as in the preceding section, the derivation of the Fourier transformation with respect to space
starts with the multidimensional phasor from (32.21)

u01(x, t; k0, ω1) = Ũ (k0, ω1)e
i(ω1t+kT

0 x). (32.37)

As in (32.31), the dependence of the complex amplitude Ũ (k0, ω1) on the wave vector k0 and the
angular frequency ω1 has been made explicit in the notation.

In a first step similar to (32.32) all phasors with the same wave vector k0 but with varying angular
frequency ω1 are used to describe the superposition

u0(x, t; k0) = 1

2π

∫ ∞

−∞
Ũ (k0, ω1)e

i(ω1t+kT
0 x)dω1 = F−1

t {Ũ (k0, ω1)e
i kT

0 x}. (32.38)

Inverting (32.38) gives

Ũ (k0, ω0)e
i kT

0 x = Ft {u0(x, t; k0)}. (32.39)
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In a second step the superposition is extended to all possible values of the elements of the wave
vector k0

U (x, ω) = 1

(2π)d

∫ ∞

−∞
Ft {u0(x, t; k0)}dk0 = 1

(2π)d

∫ ∞

−∞
Ũ (k0, ω1)e

i kT
0 xdk0. (32.40)

The number of spatial dimensions is equal to d, d = 1, 2, 3; the integrals are understood as multiple
integrals over all components of the wave vector k0.

Using the relation of the complex exponential function in multiple dimensions (compare (32.33))

1

(2π)d

∫ ∞

−∞
ei(k0−k)T xdx = δ(k0 − k) (32.41)

allows to turn (32.40) into ∫ ∞

−∞
U (x, ω)e−i kT xdx = Ũ (k, ω). (32.42)

The results (32.40) and (32.42) constitute the spatial Fourier transformation in multiple dimensions

Ũ (k, ω) = Fx{U (x, ω)} =
∫ ∞

−∞
U (x, ω)e−i kT xdx, (32.43)

U (x, ω) = F−1
x {Ũ (k, ω)} = 1

(2π)d

∫ ∞

−∞
Ũ (k, ω)ei kT xdk. (32.44)

4.32.3.3.3 Fourier transformation with respect to space and time
The Fourier transformations with respect to time and space can be compiled as in Figure 32.8 below.
The transformation symbols ◦––• denote the transformation pairs Ft from (32.35, 32.36) and Fx from
(32.43, 32.44).

The sequence of the transformations has been shown above in the order

t

(via lower left corner of Figure 32.8), but the order of the transformations can also be reversed (via
upper right corner).

u(x , t ) ũ(k , t )

U (x , ω ) Ũ (k , ω )

t t

FIGURE 32.8

Fourier transformation in time and space.
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u01(x, t; k0 , ω1) 2π Ũ (k0 , ω1)δ(ω1 −ω)eikT
0 x (2π)d+1 Ũ (k0 , ω1)δ(ω1 −ω)δ(k0 −k)

u0(x, t; k0) Ũ (k0 , ω)eikT
0 x (2π)d Ũ (k0 , ω)δ(k0 −k)

u(x, t) U (x, ω) Ũ (k , ω)

1
2π

dω1
1
2π

dω1
1
2π

dω1

1
(2π)d dk0

1
(2π)d dk0

1
(2π)d dk0

t

t

t

FIGURE 32.9

Representation of the Fourier transformation in time and space as integrals of multidimensional phasors
with respect to angular frequency and wave vector.

Note that the Fourier transform U (x, ω) with respect to time is designated by a capital letter and the
Fourier transforms ũ(k, t) and Ũ (k, ω) with respect to space by a tilde. These designations are inherited
from the complex amplitudes of the respective phasors (see (32.32) and (32.38)).

The transition from the multidimensional phasor u01(x, t; k0, ω1) to the general signal u(x, t) and
its Fourier transformation in time and space Ũ (k, ω) according to (32.37) through (32.42) is shown in
Figure 32.9.

The Fourier transformations in time and space can also be used for a concise formulation of the
relations (32.33) and (32.41)

Ft {eiω1t } = 2π δ(ω1 − ω), (32.45)

Fx{ei kT
0 x} = (2π)dδ(k0 − k). (32.46)

They lead to the Fourier transforms in the upper triangle of Figure 32.9.

4.32.3.3.4 Fourier transformation of plane waves
The introduction of the Fourier transformations in time and space so far is valid for general functions
u(x, t) in the sense that they need not represent solutions of the wave equation. Imposing the requirement
that u(x, t) describes an acoustic wave poses also restrictions on its Fourier transforms. These are derived
here for the various cases shown in Figure 32.9. To distinguish general functions u(x, t) of time and
space from solutions of the wave equation the latter are denoted by p(x, t) resembling sound pressure.

In (32.29) the complex-valued monofrequent solution of the wave equation has been written in the
form

p01(x, t; n0, ω1) = P̃(n0, ω1)e
iω1(t+ 1

c nT
0 x) = P̃(n0, ω1)e

iω1(t+t0(x)). (32.47)
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The time delay

t0(x) = 1

c
nT

0 x (32.48)

is the time that a plane wave with the speed c takes to travel from the origin of the spatial coordinate
system (x = 0 and t0 = 0) to the location x. This time may also be negative, depending on the position
of x relative to the origin and on the direction of the normal vector n0.

The superposition for all possible angular frequencies ω1 leads to

p0(x, t; n0) = 1

2π

∫ ∞

−∞
p01(x, t; n0, ω1)dω1 = 1

2π

∫ ∞

−∞
P̃(n0, ω1)e

iω1(t+t0(x))dω1

= F−1
t

{
P̃(n0, ω)eiωt0(x)

}
= p̃(n0, t + t0(x)). (32.49)

The function p̃(n0, t) describes the waveform of the sound pressure measured at the origin e.g., with a
microphone, i.e.,

pmic(t) = p0(0, t; n0) = p̃(n0, t).

The Fourier transform of p0(x, t; n0) with respect to time can be read directly from (32.49) as

Ft {p0(x, t; n0)} = P0(x, ω; n0) = P̃(n0, ω)eiωt0(x) (32.50)

and Fourier transformation with respect to space results in (see (32.46))

Fx{P0(x, ω; n0)} = P̃(k, ω; n0) = (2π)d P̃(n0, ω)δ
(ω

c
n0 − k

)
. (32.51)

The Dirac function in (32.51) restricts the support of the space-time spectrum P̃(k, ω) to those values
of ω for which the argument of the Dirac function is zero. This statement is again the dispersion relation
(32.26), now valid for all space-time frequencies simultaneously.

The relations between the monofrequent plane wave p01(x, t; n0, ω1), its broadband version
p0(x, t; n0) and their respective Fourier transforms is shown in Figure 32.10.

p01(x, t;n0, ω1) 2π P̃ (n0, ω1)δ(ω1−ω)eiω1t0(x) (2π)d+1P̃ (n0, ω1)δ(ω1−ω)δ(ω1
c n0−k)

p0(x, t;n0) P̃ (n0, ω)eiωt0(x) (2π)d P̃ (n0, ω)δ(ω
c n0−k)

1
2π dω1

1
2π dω1

1
2π dω1

t

t

FIGURE 32.10

Representation of a monofrequent plane wave as a phasor and its integration with respect to angular fre-
quency.
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Comparing Figures 32.7 and 32.10 shows that the integration with respect to the wave vector in
Figure 32.7 (bottom row) has not been performed for the plane wave in Figure 32.10. The reason lies
in the dispersion relation which reduces the number of free parameters in the wave vector by one.

In one spatial dimension, the wave vector k0 is equal to the wave number k0, which can take any
real value. The dispersion relation reduces this freedom to only two possible values ±1 for which the
magnitude of the wave number is unity.

In two spatial dimensions, there are two free components in kT
0 = [k0x k0y]. The dispersion relation

reduces the number of free parameters to one since nT
0 = [cos ϕ sin ϕ] depends only on the angle ϕ

which describes the possible angles of incidence. Thus the unit vector n0 describes a circle of radius 1
with the angle ϕ as parameter.

In three spatial dimensions, the wave vector k0 has three independent components, while the normal
vector n0 describes the surface of a unit sphere with two independent parameters, the azimuth and the
zenith angle.

The one-dimensional case is discussed below. The two- and three-dimensional cases require the
formulation in polar and spherical coordinates, respectively. They are presented in Section 4.32.3.4 and
Section 4.32.3.5.

4.32.3.3.5 Plane waves in one spatial coordinate
In one space dimension there are only two possible values for the unit vector n0 = ±1. The time delay
t0 from (32.48) has the values

t0(x) = ± x

c
(32.52)

and (32.50) has the form
P0(x, ω;±1) = P̃(±1, ω)e±iωx/c. (32.53)

The superposition for all possible values (compare (32.40)) is restricted here to two terms

P(x, ω) = P̃(+1, ω)eiωx/c + P̃(−1, ω)e−iωx/c. (32.54)

For a shorter notation in the time domain, introduce

p̃+(t) = F−1
t {P̃(+1, ω)}, p̃−(t) = F−1

t {P̃(−1, ω)}. (32.55)

Then the superposition of both components in the space-time domain has the form

p(x, t) = p̃+
(

t + x

c

)
+ p̃−

(
t − x

c

)
. (32.56)

This representation is known as the D’Alembert-solution of the wave equation or the traveling wave
solution. Inspection of (32.56) shows that p̃−

(
t − x

c

)
is a wave traveling in the direction of the positive

x-axis, since p̃−
(
t − x

c

) = const for all values of t which increase proportional to x . By the same
argument, p̃+

(
t + x

c

)
is a wave traveling in the direction of the negative x-axis.

The corresponding relation in the wavenumber-frequency domain follows from (32.53) by Fourier
transformation with respect to space as

P̃(k, ω) = 2π P̃(±1, ω)δ
(
±ω

c
− k

)
. (32.57)
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FIGURE 32.11

Frequency-domain representation of |P̃ (k , ω)| in the k -ω-plane for one space dimension. The k - and ω axes
are labeled in multiples of π . The waves traveling in both directions are assumed to be the same, i.e.,
P̃ (+1, ω) = P̃ (−1, ω).

Figure 32.11 illustrates the behavior of P̃(k, ω) for one dimension in space. The spectrum P̃(k, ω) takes
the values P(±1, ω) only for ω = ±kc (s. (32.26)) and is zero elsewhere.

4.32.3.4 Circular harmonics
The plane wave solution of the wave equation has been introduced in Section 4.32.3.2 and further
discussed in Section 4.32.3.3 because it has a simple representation in Cartesian coordinates, see e.g.,
(32.29). General sound fields are however much more complicated than a monofrequent wave from a
fixed direction. Nevertheless the plane wave solution is a valuable building block for the description of
general sound fields. In particular, a general sound field can be described as a superposition of plane
waves from a continuum of directions [22]. This superposition is shown here for plane waves from all
directions in the horizontal plane. Section 4.32.3.5 extends this idea to plane waves from all directions
in the three-dimensional space.

In analogy to Figure 32.9 it is important to distinguish

monofrequent plane waves: waves with a plane wave front indicated by its normal vector n0 and
with a monofrequent time characteristic with the fixed angular frequency ω1 (see also the top row
of Figure 32.10),
broadband plane waves: plane waves with a time characteristic that is composed of (possibly
infinitely many) monofrequent components (see also the bottom row of Figure 32.10),
general sound fields: sound fields that are composed of broadband plane waves from (possibly
infinitely many) different directions.

The role of the plane wave for the description of general sound fields is somewhat similar to the
role of sinusoids or complex exponentials for the description of general sound spectra. Although the
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spectra of speech and music signals may be very complex, the Fourier transformation allows to write
any time signal as a superposition of sinusoids. In the same way, a sound field can be expressed as a
superposition of plane waves.

4.32.3.4.1 Monofrequent plane wave in polar coordinates
The superposition of plane waves from all directions in a horizontal plane is best accomplished in polar
coordinates introduced in Section 4.32.2.2. First consider the phasor from (32.29) where the notation
has been adapted to the description with polar coordinates

p01(x, t;ϕ0, ω1) = P̃(ϕ0, ω1)e
iω1(t+t0(x)). (32.58)

The argument of the complex amplitude P̃(ϕ0, ω1) indicates that its value depends not only on the
angular frequency ω1 but also on the direction ϕ0 of the plane wave. The vector of space variables x
and the normal vector n0 are given by

x =
[

x
y

]
= r

[
cos α

sin α

]
and n0 =

[
cos ϕ0
sin ϕ0

]
. (32.59)

Note that the vector of space variables x may vary with the distance r and angle α, while the wave
vector n0 of a plane wave is fixed for a given direction ϕ0.

The scalar product nT
0 x of x and n0 can be expressed like any scalar product by the lengths of these

vectors and the angle γ which they include

nT
0 x = |n0||x| cos γ = r cos γ with γ = α − ϕ0. (32.60)

This general relation follows here from (32.59) with the trigonometric relation for the difference of two
angles

nT
0 x = r( cos α cos ϕ0 + sin α sin ϕ0) = r cos (α − ϕ0). (32.61)

The plane wave from (32.58) can now be expressed as

p01(r , α, t;ϕ0, ω1) = P̃(ϕ0, ω1)e
iω1t ei ω

c r cos (α−ϕ0), (32.62)

where the dependence on the polar coordinates is now written explicitly by including radius r and angle
α in the list of parameters. To simplify the notation, no separate designation is introduced; i.e., the
somewhat loosely formulated identity p01(r , α, t;ϕ0, ω1) = p01(x, t;ϕ0, ω1) is assumed.

The plane wave representation in polar coordinates is obviously a periodic function with respect to
the angle α due to the periodicity of the cosine

p01(r , α, t;ϕ0, ω1) = p01(r , α + 2π, t;ϕ0, ω1). (32.63)

Its expansion into orthogonal functions is given by a Fourier series as shown next.
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4.32.3.4.2 Expansion of monofrequent plane waves into orthogonal functions
The Fourier coefficients of the monofrequent plane wave in (32.62) follow from an expansion of the
complex exponential term. It can be obtained from the following definition of the Bessel functions of
the first kind [23]1

in Jn(kr) = 1

2π

∫ 2π

0
ei(kr cos γ−nγ )dγ, n ∈ Z, (32.64)

which represents the Fourier series coefficients of the function exp (ikr cos γ ). Its Fourier series is then
given by

eikr cos (α−ϕ0) =
∞∑

n=−∞
inein(α−ϕ0) Jn(kr). (32.65)

In the literature on acoustics, this relation is called the Jacobi-Anger expansion [22,23].
The Fourier series expansion of (32.62) follows now immediately as

p01(r , α, t;ϕ0, ω1) = P̃(ϕ0, ω1)

∞∑
n=−∞

ineiω1t einα Jn

(ω1

c
r
)

e−inϕ0 . (32.66)

The importance of this representation lies in the fact that its components

ineiω1t · einα · Jn

(ω1

c
r
)

are separated in terms that depend on time t , angle α, and radius r . This is not the case in (32.62) where
both r and α appear in the exponent of the complex exponential function.

The monofrequent plane wave has been treated in great detail here since it is the building block for
the representation of broadband plane waves and general sound fields.

4.32.3.4.3 Expansion of broadband plane waves into orthogonal functions
A broadband plane wave p0(r , α, t;ϕ0) is composed of monofrequent plane waves with different
angular frequencies ω1 but identical direction ϕ0. This composition is formulated in mathematical
terms by an integration of the monofrequent plane wave (32.62) with respect to ω1. Through the term
exp (iω1t), the integration takes the form of an inverse Fourier transformation

p0(r , α, t;ϕ0) = 1

2π

∫ ∞

−∞
p01(r , α, t;ω1, ϕ0)dω1

= 1

2π

∫ ∞

−∞
P̃(ϕ0, ω1)e

i
ω1
c r cos (α−ϕ0)eiω1t dω1

= F−1
t

{
P̃(ϕ0, ω1)e

i
ω1
c r cos (α−ϕ0)

}
. (32.67)

This relation is expressed shorter by the Fourier transform of p0(r , α, t;ϕ0) as

P0(r , α, ω;ϕ0) = Ft {p0(r , α, t;ϕ0)} = P̃(ϕ0, ω)ei ω
c r cos (α−ϕ0). (32.68)

1The mathematical literature presents various versions of this integral relation which differ in the sign of the summation index
n or in the choice of the trigonometric function sin or cos. The equivalence of these versions can be shown by substitution.
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Then, with (32.65) the Fourier transform P0(r , α, ω;ϕ0) of the plane wave can be represented by a
series expansion

P0(r , α, ω;ϕ0) =
∞∑

n=−∞
P̃(ϕ0, ω)inein(α−ϕ0) Jn

(ω

c
r
)

. (32.69)

This series represents a plane wave from the direction ϕ0 with the arbitrary spectrum P̃(ϕ0, ω).

4.32.3.4.4 Expansion of general sound fields into orthogonal functions
Finally, a general sound field p(r , α, t) can be obtained by composing broadband plane waves from
all possible directions 0 ≤ ϕ0 < 2π . The composition is formulated as an integration of the Fourier
transform of the broadband plane wave (32.69) with respect to ϕ0. By extracting the exponential term
e−inϕ0 and applying (32.69) to the remaining integral, it can be written as the calculation of a Fourier
coefficient

P(r , α, ω) = 1

2π

∫ 2π

0
P0(r , α, ω;ϕ0)dϕ0 =

∞∑
n=−∞

P̆n(ω)ineinα Jn

(ω

c
r
)

, (32.70)

where the complex amplitude P̃(ϕ0, ω) is represented by its Fourier coefficients P̆n(ω)

P̆n(ω) = 1

2π

∫ 2π

0
P̃(ϕ0, ω)e−inϕ0 dϕ0, (32.71)

as

P̃(ϕ0, ω) =
∞∑


=−∞
P̆
(ω)ei
ϕ0 . (32.72)

Finally the Fourier transform P(r , α, ω) of a general sound field can be expressed as a Fourier series

P(r , α, ω) =
∞∑

n=−∞
P̊n(r , ω)einα (32.73)

with the Fourier series coefficients

P̊n(r , ω) = P̆n(ω)in Jn

(ω

c
r
)

. (32.74)

These Fourier series coefficients characterize the angular structure of the sound field, respectively of
its Fourier transform. Higher orders n correspond to a finer angular structure. Note that the radius
dependent part Jn

(
ωr/c

)
is independent of the specific wave field.

4.32.3.4.5 Summary of the representations of a general sound field
The transition from a monofrequent plane wave in polar coordinates to a broadband plane wave and to
a general sound field is shown in Figure 32.12. It corresponds to the center column of Figure 32.10 with
the spatial dependency expressed in polar coordinates as derived in this section.
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P01(r, α, ω;ω1, ϕ0) = 2π P̃ (n0, ω1)δ(ω1 − ω) ei
ω1
c r cos(ϕ0−α)

P0(r, α, ω;ϕ0) = P̃ (n0, ω) ei ω
c r cos(ϕ0−α)

P (r, α, ω)

1
2π dω1

1
2π

2π

0
dϕ0

FIGURE 32.12

Representation of the Fourier transform of a monofrequent plane wave in polar coordinates and its integration
with respect to angular frequency ω1 and direction of arrival ϕ0.

The relations for the Fourier transform of the general sound field P(r , α, ω) from (32.69) to (32.74)
are compiled in (32.75) for easier reference

P(r , α, ω) =
∞∑

n=−∞
P̊n(r , ω)einα

=
∞∑

n=−∞
P̆n(ω)ineinα Jn

(ω

c
r
)

, (32.75)

P̃(ϕ0, ω) =
∞∑


=−∞
P̆
(ω)ei
ϕ0 .

4.32.3.4.6 Orthogonality properties of the complex exponential functions
The relations in this section are based on Fourier series expansions and have exploited the orthogonality
properties of the complex exponential functions. Similar properties of more complicated functions are
required for three-dimensional sound fields in spherical coordinates in Section 4.32.3.5. To highlight
the similarities between these two different systems of orthogonal functions, orthogonality properties of
the complex exponential functions are compiled here. They serve as a review on the material on circular
harmonics and as well as for later reference from Section 4.32.3.5.

For the sake of a uniform notation, the designation Vn(ϕ) for the complex exponential functions is
introduced as

Vn(ϕ) = einϕ (32.76)

with the index n, n ∈ Z and the angle ϕ.
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Orthogonality relation with respect to the angle: The integration with respect to the angle ϕ over
one period of length 2π is equivalent to the integration around a circle. The associated orthogonality
property is expressed with the Kronecker symbol δμn as

1

2π

∫ 2π

0
V ∗

μ(ϕ)Vn(ϕ)dϕ = 1

2π

∫ 2π

0
ei(n−μ)ϕdϕ = δμn . (32.77)

It is easily proven by evaluating the integral separately for the cases n = μ and n �= μ.
Closure equation with respect to the index: The functions Vn(ϕ) form a complete set of orthogonal

functions and therefore satisfy a closure relation (see [23]). It can be derived by summation with respect
to the index n. Applying the orthogonality property (32.77) gives

1

2π

∞∑
n=−∞

V ∗
n (ϑ)Vn(ϕ) = 1

2π

∞∑
n=−∞

ein(ϑ−ϕ) = δ(ϑ − ϕ) (32.78)

with the delta function δ(ϕ).
Compilation of Fourier series expansions: Table 32.2 compiles the Fourier series expansions used in

Section 4.32.3.4. The first one is the closure relation from (32.78). The factor 1/(2π) can be interpreted
as a series of Fourier coefficients that are constant with respect to n; the associated function is the delta
impulse, see (32.79). When the Fourier series coefficients are expressed by Bessel functions as in Jn(kr),
then the Fourier series expansion of a plane wave results in (32.80). Multiplying these Bessel coefficients
by an arbitrary sequence of coefficients P̆n(ω) gives the Fourier series expansion of a general sound
field P(r , ϕ − ϑ,ω) in (32.81).

4.32.3.5 Spherical harmonics
Building a three-dimensional sound field from plane wave components follows the same pattern as
described above for components from the horizontal plane. The main difference is obviously that now

Table 32.2 Compilation of Fourier Series Expansions Used in Section 4.32.3.4

1
2π

∞∑
n=−∞

V ∗
n (ϑ)Vn(ϕ) = 1

2π

∞∑
n=−∞

ein(ϑ−ϕ) = δ(ϑ − ϕ) (32.79)

∞∑
n=−∞

(
i nJn

(ω

c
r
))

V ∗
n (ϑ)Vn(ϕ) = 1

2π

∞∑
n=−∞

(
i nJn

(ω

c
r
))

ein(ϑ−ϕ)

= exp
(
i
ω

c
r cos (ϑ − ϕ)

)
(32.80)

∞∑
n=−∞

P̆n(ω)i nJn

(ω

c
r
)

V ∗
n (ϑ)Vn(ϕ) = P(r , ϕ − ϑ,ω) (32.81)
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plane waves not only from all around the horizontal plane but also from above and below are involved.
This means in mathematical terms that the integration around a circle that frequently arises in Section
4.32.3.4 is here replaced by an integration on a sphere. The presentation for three-dimensional sound
fields therefore repeats the same steps as for planar sound fields in Section 4.32.3.4.

4.32.3.5.1 Monofrequent plane waves in spherical coordinates
The superposition of plane waves from all directions in the three-dimensional space requires spherical
coordinates as introduced in Section 4.32.2.2. At first, the definition of the phasor from (32.29) is updated
such that the argument of the complex amplitude P̃(ϕ0, θ0, ω1) includes also the zenith angle θ0

p01(x, t;ϕ0, θ0, ω1) = P̃(ϕ0, θ0, ω1)e
iω1(t+t0(x)). (32.82)

The time delay t0(x) is given by (32.48), but the vector of space variables x and the normal vector n0
are defined in three spatial spherical coordinates according to (32.6) by

x =
⎡
⎣ x

y
z

⎤
⎦ = r

⎡
⎣ cos α sin β

sin α sin β

cos β

⎤
⎦ , n0 =

⎡
⎣ cos ϕ0 sin θ0

sin ϕ0 sin θ0
cos θ0

⎤
⎦ . (32.83)

The scalar product nT
0 x follows now from (32.83) by manipulation with standard trigonometric

relations

nT
0 x = r( cos ϕ0 sin θ0 cos α sin β + sin ϕ0 sin θ0 sin α sin β + cos θ0 cos β)

= r( sin θ0 sin β( cos ϕ0 cos α + sin ϕ0 sin α) + cos θ0 cos β)

= r( sin θ0 sin β cos (ϕ0 − α) + cos θ0 cos β) = r cos γ. (32.84)

The angle γ is again the angle included by the vectors x and n0, now in three-dimensional space, see
Figure 32.13.

The plane wave from (32.82) can be expressed similar to (32.62) as

p01(x, t;ϕ0, θ0, ω1) = P̃(ϕ0, θ0, ω1)e
iω1t ei

ω1
c r cos γ , (32.85)

with the angle γ defined from (32.84). The dependence on the spherical coordinates is written explicitly
by including radius r and the angles α and β in the list of parameters as

p01(r , α, β, t;ϕ0, θ0, ω1) = P̃(ϕ0, θ0, ω1)e
iω1t ei

ω1
c r cos γ . (32.86)

This relation looks similar to the corresponding one in (32.62), but the main difference is that the angles
are now defined with respect to a sphere, see Figure 32.13. As a consequence, the expansion into basis
functions has to take the resulting spherical symmetry into account.

4.32.3.5.2 Definition of the spherical harmonic functions
The spherical harmonic functions or short spherical harmonics are an orthogonal basis for functions
defined on a sphere. Their definition and the notation varies slightly in the literature on mathematics,
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x

y

z

n0
x

γ

FIGURE 32.13

Spherical coordinate system with direction n0 of a plane wave.

acoustics, quantum physics, and other fields of science. The definition and the description of their
properties used here follow [24].

The spherical harmonic functions Y m
n (θ, ϕ) may be defined as

Y m
n (θ, ϕ) = C(m, n)P |m|

n ( cos θ)eimϕ, (32.87)

The set of functions Pm
n ( cos θ) are the associated Legendre functions of nth degree and mth order.

They are defined in terms of the Legendre polynomials Pn(x) by

Pm
n (x) = (−1)m(1 − x2)

m
2

dm

dxm
Pn(x), ∀n, m ≥ 0, (32.88)

P−m
n (x) = (n−m)!

(n+m)! Pm
n (x). (32.89)

The Legendre polynomials themselves are determined by their generating function

(1 − 2xy + y2)−
1
2 =

∞∑
n=0

Pn(x)yn |y| < 1. (32.90)

Thus the index n indicates the degree of the Legendre polynomial Pn(x) while the index m indicates
the order of the differentiation in (32.88) for the definition of the associated Legendre function Pm

n (x).
The factor C(m, n) is chosen such that the spherical harmonic functions form an orthonormal basis

with respect to integration on a sphere (see (32.92)), e.g., as

C(m, n) = (−1)m

√
2n + 1

4π

(n − |m| )!
(n + |m| )! . (32.91)
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Other definitions of the spherical harmonic functions are also in use, which differ from (32.87)
and (32.91) mainly with respect to the factor (−1)m . The choice of definition is a matter of taste and
convention. The present definition has found to be the most flexible one.

A note on the notation is required here. The designations Pn(x) for the Legendre polynomials and
Pm

n (x) for the associated Legendre functions have been chosen here because they are commonly used in
the mathematical literature. They must not be confused with the Fourier coefficients P̊n(r , ω) or P̆n(ω)

e.g., in (32.74). This ambiguity in the notation is permissible here since the further presentation uses
almost exclusively the spherical harmonic functions Y m

n (θ, ϕ).

4.32.3.5.3 Orthogonality relations for spherical harmonic functions
The properties of the Legendre polynomials are covered in the mathematical literature on orthogonal
polynomials. The extension to the associated Legendre functions and to the spherical harmonic functions
are found e.g., in [22,23]. Therefore the derivation of the spherical harmonic functions is not repeated
here. Some clues on their role as solution of the acoustic wave equation are given in Section 4.32.3.5.

In the context of sound field reproduction, mainly the orthogonality properties of the spherical
harmonics are of importance. They are compiled below following the presentation in [23] and in parallel
to the orthogonality properties of the complex exponentials in Section 4.32.3.4.

Orthogonality with respect to the azimuth and zenith angle: An integration on a sphere is accom-
plished by an integration on a circle in the horizontal plane (azimuth angle ϕ, compare (32.77)) and an
integration of the zenith angle θ . It establishes the following orthogonality relation∫ 2π

0

∫ π

0
Y m1∗

n1
(θ, ϕ)Y m2

n2
(θ, ϕ) sin θ dθ dϕ = δn1n2δm1m2 . (32.92)

Closure equation with respect to the indices n and m: A double summation of the spherical harmonics
with respect to the degree n and mth order leads to the closure equation

∞∑
n=0

n∑
m=−n

Y m∗
n (θ, ϕ)Y m

n (β, α) = δ(ϕ − α)δ( cos θ − cos β) = δ(ϕ − α)δ(θ − β)
1

sin θ
. (32.93)

Orthogonal expansion of a function defined on a sphere: A function f (θ, ϕ) of the azimuth angle
ϕ and the zenith angle θ is called a function which is defined on a sphere. The orthogonality relation
(32.92) allows to expand such functions into spherical harmonics as

f (θ, ϕ) =
∞∑

n=0

n∑
m=−n

fmnY m
n (θ, ϕ). (32.94)

The expansion coefficients fmn are derived by application of (32.92).
Expansion of a plane wave into spherical waves: An example for the expansion of a function defined

on a sphere is the expansion of a plane wave into spherical harmonics

4π

∞∑
n=0

n∑
m=−n

in jn(kr)Y m∗
n (θ, ϕ)Y m

n (β, α) = eikr cos γ , (32.95)
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where γ = γ (α, β, ϕ, θ) is related to α, β, ϕ, θ by (compare (32.84))

cos γ = sin θ sin β cos (ϕ − α) + cos θ cos β. (32.96)

The expansion coefficients include the spherical Bessel function jn(kr) which are described in mathe-
matical texts on special functions e.g., [23].

4.32.3.5.4 Expansion of broadband plane waves into orthogonal functions
The orthogonality relations for spherical harmonic functions allow to expand the monofrequent plane
wave from (32.82) and its generalizations into orthogonal functions. The presentation follows closely
the circular case from Section 4.32.3.4.

At first, the monofrequent plane wave (32.82) is integrated with respect to its angular frequency ω1
to obtain a broadband plane wave (see (32.67))

p0(r , α, β, t;ϕ0, θ0) = 1

2π

∫ ∞

−∞
p01(r , α, β, t;ω, ϕ0, θ0)dω1. (32.97)

Similar to (32.68) follows its Fourier transform with respect to time

P0(r , α, β, ω;ϕ0, θ0) = Ft {p0(r , α, β, t;ϕ0, θ0)} = P̃(ϕ0, θ0, ω)ei ω
c r cos γ , (32.98)

where the angle γ is defined on a sphere as shown in Figure 32.13. The expansion into spherical
harmonics is given by (32.95) as

P0(r , α, β, ω;ϕ0, θ0) = 4π P̃(ϕ0, θ0, ω)

∞∑
n=0

n∑
m=−n

in jn
(ω

c
r
)

Y m∗
n (θ0, ϕ0)Y

m
n (β, α). (32.99)

4.32.3.5.5 Expansion of general sound fields into orthogonal functions
The corresponding expansion for general sound fields in a source-free domain follows by superposition
of plane wave contributions (32.99) from all directions ϕ0 and θ0

P(r , α, β, ω) =
∫ 2π

0

∫ π

0
P0(r , α, β, ω;ϕ0, θ0) sin θ dθ0 dϕ0. (32.100)

Applying the spherical integration with respect to ϕ0 and θ0 to the series expansion (32.99) gives

P(r , α, β, ω) = 4π

∞∑
n=0

n∑
m=−n

in jn
(ω

c
r
)

P̆m
n (ω)Y m

n (β, α) (32.101)

with the coefficients

P̆m
n (ω) =

∫ 2π

0

∫ π

0
P̃(ϕ0, θ0, ω)Y m∗

n (θ, ϕ) sin θ dθ dϕ (32.102)
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of the expansion

P̃(ϕ0, θ0, ω) =
∞∑

n=0

n∑
m=−n

P̆m
n (ω)Y m

n (θ, ϕ). (32.103)

Similar to (32.73) and (32.74), a general sound field in the three-dimensional space is given by the
expansion

P(r , α, β, ω) =
∞∑

n=0

n∑
m=−n

P̊m
n (r , ω)Y m

n (β, α) (32.104)

with the expansion coefficients

P̊m
n (r , ω) = 4π in jn

(ω

c
r
)

P̆m
n (ω). (32.105)

Note that these expansion coefficients are again separable with respect to the radius r and the mode
numbers n, m.

4.32.3.5.6 Relation between spherical harmonics expansions and Fourier series
Since the expansion (32.101) converge uniquely and uniformly above a certain threshold, the order of
summation may be exchanged [24]. If the spherical harmonics Y m

n (β, α) are then expressed by their
explicit formulation (32.87), the Fourier series that is inherent to (32.101) is revealed. It is given by

P(x, ω) =
∞∑

m=−∞
P̊m(r , β, ω)eimα (32.106)

with the Fourier coefficients

P̊m(r , β, ω) =
∞∑

n=|m|
4π in P̆m

n (ω) jn
(ω

c
r
)

C(m, n)P |m|
n ( cos β). (32.107)

The normalization coefficients C(m, n) are defined by (32.91). Note that the Fourier coefficients
P̊m(r , β, ω) of the spherical harmonics in (32.107) correspond to the Fourier coefficients P̊n(r , ω)

for the circular case in (32.73). On the other hand P |m|
n ( cos β) are the associated Legendre Functions

from (32.87).

4.32.3.5.7 Summary of the representations of a general sound field
The transition from a monofrequent plane wave in spherical coordinates to a broadband plane wave and
to a general sound field is shown in Figure 32.14 in a similar way as for polar coordinates in Figure 32.12.
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P01(r, α, β, ω;ω1, ϕ0, θ0) = 2π P̃ (ϕ0, θ0, ω1)δ(ω1 − ω) ei
ω1
c r cos γ

P0(r, α, β, ω;ϕ0, θ0) = P̃ (ϕ0, θ0, ω) ei ω
c r cos γ

P (r, α, β, ω)

1
2π dω1

2π

0

π

0

sin θ0 dθ0dϕ0

FIGURE 32.14

Representation of the Fourier transform of a monofrequent plane wave in spherical coordinates and its
integration with respect to angular frequency ω1 and direction of arrival ϕ0, θ0.

The relations for the Fourier transform of the general sound field P(r , α, ω) from (32.100) to (32.107)
are compiled in (32.108)

P(r , α, β, ω) =
∞∑

m=−∞
P̊m(r , β, ω)eimα

=
∞∑

n=0

n∑
m=−n

P̊m
n (r , ω)Y m

n (β, α) (32.108)

=
∞∑

n=0

n∑
m=−n

P̆m
n (ω)4π inY m

n (β, α) jn
(ω

c
r
)

,

P̊m
n (r , ω) = 4π in jn

(ω

c
r
)

P̆m
n (ω).

4.32.3.5.8 Derivation of the spherical harmonic functions
The derivation of the spherical harmonic functions Y m

n (θ, ϕ) is found in many textbooks on acoustics
[16,22,24] or on mathematical methods in physics [23,25]. The essential steps are

1. Express the Laplace operator in the acoustic wave equation in spherical coordinates.
2. Solve the wave equation by the method of separation of variables to obtain separate ordinary differ-

ential equations with respect to time, radius, azimuth and zenith angle.
3. Obtain the solution of the differential equation with respect to time in the form of complex expo-

nentials for time and angular velocity (t, ω).
4. Obtain the solution of the differential equation with respect to the radius in the form of spherical

Bessel functions with respect to radius and wave number (r , k).
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5. Obtain the solution of the differential equation with respect to the azimuth angle in the form of
complex exponentials for azimuth angle and mode number (ϕ, n).

6. Obtain the solution of the differential equation with respect to the zenith angle in the form of
associated Legendre functions for zenith angle and mode numbers (θ, n, m).

7. Form the spherical harmonic functions as the product of the complex exponentials for azimuth angle
and mode number and the associated Legendre functions.

The complete process is somewhat tedious and involves various special functions from higher math-
ematics. Since it is well covered in the standard literature as referenced above, no derivation is given
here.

4.32.4 Response to sound sources
The response of a sound field to an acoustic point source is described by the so-called Green’s function.
This section derives some of its basic properties from the acoustic wave equation. Then the Green’s
function is used to obtain the sound field within a certain spatial region when interior sources or boundary
values are given. The latter case serves to introduce the Kirchhoff-Helmholtz integral equation for later
use in Section 4.32.5. Finally the Green’s function for wave propagation in the free-field is derived. The
representation follows classic texts like [15–17,25] and has been adapted from [26].

4.32.4.1 The inhomogenous wave equation
From the homogeneous acoustic wave Eq. (32.3) follows the inhomogeneous wave equation by con-
sidering a source term p0(x, t)

�p(x, t) − 1

c2

∂2

∂t2 p(x, t) = p0(x, t). (32.109)

Fourier transformation Ft according to (32.35) leads to the frequency domain version of the acoustic
wave Eq. (32.109), the so-called Helmholtz equation

�P(x, t) +
(ω

c

)2
P(x, ω) = P0(x, ω) x ∈ V . (32.110)

It is valid within a spatial region V which may be bounded by the walls of an enclosure. However, V
may also be an arbitrary volume in the free field and not directly related to the walls of an acoustic
environment.

For later reference the operations on the left hand side of (32.110) can be abbreviated by the linear
operator

L{P(x, ω)} = �P(x, t) +
(ω

c

)2
P(x, ω). (32.111)

This notation allows a very concise notation for the Helmholtz equation as

L{P(x, ω)} = P0(x, ω) x ∈ V . (32.112)
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4.32.4.2 Green’s function
The effect of a source distribution P0(x, ω) on the complete sound field in V is described by the Green’s
function. This section presents its properties and emphasizes its role for the calculation of sound fields.

4.32.4.2.1 Properties
The Green’s function describes the effect of a point source at the location ξ on the sound field P(x, ω) at
the location x. This effect depends also on the spectrum of the source signal, therefore the Green’s func-
tion G(x|ξ , ω) has two space variables and one frequency variable. To highlight the close relationship
of the two space variables, they are separated in formulas by a | rather than by a comma.

The Green’s function can be regarded as an equivalent to the impulse response of a one-dimensional
system, because the impulse response h(t, τ ) describes the effect of the input signal at time τ on the
output signal at time t . For time-invariant systems, the impulse response depends only on the difference
t − τ and is written as h(t).

The propagation of sound in enclosures depends on the distance of sources to the walls. Therefore
the signal at a receiver varies also when the sources and the receiver move synchronously within an
enclosure. Thus sound propagation in the presence of reflecting surfaces is a shift-variant process.
Furthermore there is no preferred direction of sound propagation comparable to the flow of time. This
means that the Green’s function is not one-sided with respect to space. In summary, contrary to the
impulse response of linear and time-invariant systems, the Green’s function for the propagation of
sound is not one-sided and in general also not shift-invariant. For one-dimensional time-dependent
systems, one-sided impulse responses are closely connected to causality. For multidimensional systems
the issue of causality is more involved [27].

4.32.4.2.2 The Green’s function defined by a differential equation
The Green’s function allows to write the sound pressure as a response to the source distribution P0(x, ω)

by integrating all source locations ξ ∈ V

P(x, ω) =
∫

V
G(x|ξ , ω)P0(ξ , ω)dV . (32.113)

The integration is performed with respect to the volume V which encloses all sources with amplitude
P0(x, ω), and all locations where the sound pressure P(x, ω) is of interest. Typically this volume is
defined by the walls of a room. Only in reflection-free environments does shift-invariance hold and the
integral (32.113) turns into a convolution.

To obtain an equation for the determination of the Green’s function, apply the differential operator
L from (32.111) to (32.113)

L{P(x, ω)} =
∫

V
L{G(x|ξ , ω)}P0(ξ , ω)dV = P0(x, ω). (32.114)

For the right equality to be valid, the Green’s function must satisfy the Helmholtz equation with a spatial
delta-impulse as inhomogenity

L{G(x|ξ , ω)} = �G(x|ξ , ω) + β2G(x|ξ , ω) = δ(x − ξ). (32.115)
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In principle, the Green’s function G(x|ξ , ω) can be obtained from the differential equation (32.115)
with the appropriate boundary conditions corresponding the acoustic environment. However, for simple
cases (e.g., free field) the Green’s function can also be calculated without solving a boundary-value
problem (see Section 4.32.4.4).

4.32.4.3 Calculation of the response to interior and exterior sources
When the Green’s function is known, it can be used to calculate the response to sources within V using
(32.113). However, sources outside of V are not considered by (32.113). But exactly those sources are
of interest for the synthesis of sound fields.

This section discusses the complete sound field resulting from sources both within and outside of V .
Although the general idea is covered in texts on mathematical physics like [25] a concise self-contained
derivation is presented here. Its essential component is the Gauss integral theorem as a generalization
of the integration by parts.

4.32.4.3.1 Solution of the wave equation
The derivation starts with a so-called divergence expression [25] which contains the Green’s function, the
unknown sound pressure, and their gradients. To simplify the notation, arguments may be omitted, i.e.,

P(x, ω) = P(x) = P and G(x|ξ , ω) = G(x|ξ) = G.

Now consider the divergence of ∇G · P − G · ∇ P . Inserting ±(ω
c )2G P yields an expression which

contains the differential operator L of the wave equation

∇(∇G · P − G · ∇ P) =
(

�G +
(ω

c

)2
G

)
· P − G ·

(
�P +

(ω

c

)2
P

)
= L{G} · P − G · L{P}. (32.116)

Integration with respect to the volume V on both sides and application of the Gauss integral theorem gives∮
∂V

(∇G · P − G · ∇ P)d A =
∫

V
L{G} · P dV −

∫
V

G · L{P}dV . (32.117)

The surface of the volume V is denoted by ∂V and n is the corresponding unit vector orthogonal to the
surface ∂V . The oriented surface element d A(ξ) is given in terms of the scalar surface element d A(ξ)

as d A = n d A. The dependence on ξ is sometimes omitted in the notation.
Solving for the term with L{G} gives∫

V
L{G} · P dV =

∫
V

G · L{P}dV +
∮

∂V
(∇G · P − G · ∇ P)d A. (32.118)

So far the derivation is valid for almost arbitrary functions P and G. Now the special properties of P
as solution of the Helmholtz equation according to (32.112) and of G als Green’s function according
to (32.115) are used. Then the term on the left-hand-side of (32.118) becomes∫

V
L{G(x|ξ)} · P(ξ)dV =

∫
V

δ(x − ξ)P(ξ)dV = P(x). (32.119)
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such that (32.118) turns into

P(x) =
∫

V
G(x|ξ)P0(ξ)dV +

∮
∂V

(∇G · P − G · ∇ P)d A. (32.120)

Thus the solution P(x, ω) of the wave equation consists of two components. The first one represents the
response to the sources P0(x, ω) within V , while the second one considers the behavior of the sound
pressure P and of the Green’s function G on the boundary. Both components are now discussed in
detail.

4.32.4.3.2 Discussion of the two components of the solution
Sources within V: When P(x, ω) and G(x|ξ , ω) satisfy the same homogenous boundary conditions
on ∂V , then the boundary integral in (32.120) vanishes and only the response to the sources within V
remains

P(x, ω) =
∫

V
G(x|ξ , ω)P0(ξ , ω)dV . (32.121)

Typical homogeneous boundary conditions arise from the nature of the volume V . If its surface ∂V
coincides with the walls of an enclosure then the boundary conditions may be

• P = 0 and G = 0 (pressure release surface, “soft wall”),
• ∇ P = 0 and ∇G = 0 (ideally reflecting surface, “hard wall”),
• P + 
0nT∇ P = 0 and G + 
0nT∇G = 0

(impedance boundary conditions with suitable wall factor 
0).

On the other hand, the volume V may lie completely in the free field such that free field boundary
conditions apply. They correspond to the impedance boundary conditions above with the wall factor
replaced by the free field impedance.

Boundary values: Now assume that there are no interior sources P0(x, ω), but the sound pressure or
its gradient do not vanish at the boundary. Then the sound pressure within V is only determined by the
behavior on the boundary

P(x, ω) =
∮

∂V

(∇G(x|x0, ω)P(x0, ω) − G(x|x0, ω)∇ P(x0, ω)
)

d A(x0). (32.122)

Note that ∂V denotes the boundary, x0 is a location on the boundary and d A(x0) an infinitesimal
oriented surface element. Without interior sources, the sound pressure at the boundary can only be
caused by sound sources outside of V . The term (32.122) thus reflects the response to exterior sources.
It also represents one of several possible forms of the Kirchhoff-Helmholtz integral equation which is
discussed in more detail in Section 4.32.5.1.

4.32.4.4 Calculation of the Green’s function
The determination of the Green’s function requires the solution of a boundary value problem consist-
ing of the differential equation (32.115) and the corresponding boundary conditions. These boundary
conditions are usually given by the surfaces of the enclosure and are hard to describe analytically.
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The most simple case is free field propagation. In reproduction rooms where systems for sound field
synthesis are installed this case is approximated by preparing the surfaces to be absorbing.

This section presents the Green’s functions for the free field case. At first one-dimensional spatial
propagation is considered as a preparation for the three-dimensional case.

4.32.4.4.1 One spatial dimension
In one spatial dimension, the vector x of spatial variables becomes a scalar x and the volume V consists
of an interval on the x-axis. For free field propagation, i.e., without reflections at the boundaries of
the interval, V covers the complete x-axis. The Laplace operator is simply the second derivative with
respect to the space variable � = div grad = ∂2/∂x2.

A monopole source at the location x0 with a signal p0(t) is then described by

p0(x, t) = p0(t)δ(x − x0), (32.123)

or after Fourier transform with respect to time by

P0(x, ω) = P0(ω)δ(x − x0). (32.124)

Since the response to this source propagates with the sound speed c way from the source, its Green’s
function is given by the shift operator

G(x |ξ, ω) = exp
(
−i

ω

c
r(x, ξ)

)
. (32.125)

Here r(x, ξ) = |x − ξ | is the distance between the location x where the sound pressure is observed and
the location of the source ξ . This notation is chosen with respect to the following extension to three
dimensions.

The suitability of this Green’s function is confirmed by inserting (32.124) into (32.121)

P(x, ω) =
∫

V
G(x |ξ, ω)P0(ω)δ(ξ − x0)dξ

= P0(ω)G(x |x0, ω) = P0(ω) exp
(
−i

ω

c
r(x, ξ)

)
(32.126)

and subsequent inverse Fourier transform into the time domain

p(x, t) = p0

(
t − r(x, ξ)

c

)
. (32.127)

The Green’s function (32.125) produces a sound pressure distribution p(x, t) which corresponds to the
source signal p0(t) including a time shift, which results from the distance r to the source and speed of
sound c. This is exactly what is expected from wave propagation.

4.32.4.4.2 Three spatial dimensions
The determination of the Green’s function of a monopole source in three spatial dimensions can be
inferred from the result for one spatial dimension. To this end, a function is required which describes
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the sound field of a monopole according to the differential Eq. (32.115). Since the sound waves from a
monopole source propagate in a spherical fashion, it is of advantage to use spherical coordinates. Then
the Cartesian coordinates (x, y, z) are replaced by the radius, the azimuth and the zenith (or elevation)
angles (r , ϕ, δ). In these coordinates the Laplace operator is given by

� = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin δ

∂

∂δ

(
sin δ

∂

∂δ

)
+ 1

r2 sin2 δ

∂2

∂ϕ2 . (32.128)

Due to the point symmetry of the solution all derivatives with respect to the angles ϕ and δ are zero
and the Laplace operator contains only derivatives with respect to the radius r . Its effect on the sound
pressure p takes different forms as

�p = 1

r2

∂

∂r

(
r2 ∂

∂r
p

)
= ∂2

∂r2 p + 2

r

∂

∂r
p = 1

r

∂2

∂r2 (r p). (32.129)

The wave equation (32.111) is now written with (32.128) and after multiplication with r as

∂2

∂r2

(
r p
)− 1

c2

∂2

∂t2

(
r p
) = 0. (32.130)

This equation is a wave equation with a scalar space variable r for the unknown r p(r , t).
The Green’s function for the scalar, i.e., spatially one-dimensional case is already known from

(32.125). The relation between the Green’s function for the one-dimensional case (designated here by
G1D) and the Green’s function for the three-dimensional case (designated by G3D) follows as

G1D(x |ξ, ω) = r G3D(x|ξ , ω) (32.131)

with r = |x − ξ |. Inserting (32.125) gives

G3D(x|ξ , ω) = 1

r
exp

(
−i

ω

c
r
)

= exp
(−i ω

c |x − ξ |)
|x − ξ | . (32.132)

The Green’s function for the three-dimensional case G3D(x|ξ , ω) describes a spherical wave that prop-
agates from the location ξ with the speed c. Its amplitude decreases with increasing distance r .

4.32.5 Physical foundations of sound field synthesis
This section discusses some of the physical foundations of sound field synthesis. They are exploited for
the specific synthesis methods discussed in the subsequent sections.

4.32.5.1 The Kirchhoff-Helmholtz integral equation
Sound field synthesis aims at synthesizing a desired sound field within an extended area V by sources
located on the boundary ∂V . In this context the desired sound field is assumed to originate from a
virtual source and the sources on ∂V are termed as secondary sources. Figure 32.15 illustrates the
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virtual
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S(x, ω)

P (x, ω)

x
x0

n

V

∂V

0

FIGURE 32.15

Illustration of the geometry used to discuss the physical foundations of sound field synthesis. The Kirchhoff-
Helmholtz integral equation states that the sound pressure distribution within the area V is uniquely deter-
mined by the pressure and the gradient of the pressure of the virtual source S(x, ω) on the boundary ∂V .

situation. The sound pressure P(x, ω) within V can be calculated by interpreting the secondary sources
on ∂V as inhomogeneous boundary condition. The solution of the homogeneous wave equation for
inhomogeneous boundary conditions is provided by (32.122), which is also known as the Kirchhoff-
Helmholtz integral equation.

Here, the integration of a gradient with respect to an oriented surface element d A can also be
expressed by the directional gradient ∂/∂n as ∇ P d A = ∂ P/∂n d A and similarly for ∇G. The
Kirchhoff-Helmholtz integral equation (32.122) reads then

P(x, ω) =
∮

∂V

(
∂

∂n
G(x|x0, ω)P(x0, ω) − G(x|x0, ω)

∂

∂n
P(x0, ω)

)
d A(x0). (32.133)

The Green’s function G(x|x0, ω) has to fulfill the homogeneous boundary conditions imposed on ∂V .
For sound field synthesis free-field propagation within V is typically assumed, hence that V is free
of any objects and that the boundary ∂V does not restrict propagation. The Green’s function is then
given as the free-field solution of the wave equation and is referred to as free-field Green’s function
G0(x − x0, ω). It can be interpreted as the spatio-temporal transfer function of an acoustic monopole
placed at location x0 and its directional gradient as the spatio-temporal transfer function of an acoustic
dipole at location x0, whose main axis is parallel to n [22].

Equation (32.133) states that the pressure P(x, ω) inside V is uniquely determined by the pressure
P(x0, ω) and its directional gradient on the boundary ∂V . If the Green’s function is realized by a
continuous distribution of appropriately driven monopole and dipole sources that are placed on the
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boundary ∂V , the sound field within V can be fully controlled within the volume V . In potential theory
the continuous distribution of secondary monopole/dipole sources is also termed as single/double layer
potential [28].

For sound field synthesis it is desired to synthesize the pressure field S(x, ω) of the virtual source
inside the area V . Concluding the considerations given so far, this can be achieved by a continuous
distribution of secondary monopole and dipole sources located on the boundary ∂V of the listening area
V , which are driven by the directional gradient and the pressure of the sound field S(x, ω) of the virtual
source, respectively. For the application of the introduced principle, all source contributions of S(x, ω)

are assumed to lie outside of V . The scattering occurring due to listeners inside the listening area does
not affect the synthesis in an unfavorable way because the scattered sound field does not depend on the
process generating the incident sound field. Hence, the scattering is equal either if the incident sound
field is emerging from a source with the characteristics of the virtual source or if the sound field of
the virtual source is synthesized by the secondary sources [29]. A listener thus experiences the same
scattering in a synthetic sound field like in the corresponding natural one.

4.32.5.2 Monopole only synthesis
It is desirable for a practical implementation to discard one of the two types of secondary sources stated
by the Kirchhoff-Helmholtz integral (32.133). Typically the dipole sources are removed, since monopole
sources can be realized reasonably well by (commercially available) loudspeakers with closed cabinets.
The sound field for monopole only synthesis is expressed by the synthesis equation

P(x, ω) =
∮

∂V
D(x0, ω)G(x|x0, ω)d A(x0), (32.134)

where D(x0, ω) denotes the strength of the secondary source at position x0, which is denoted as
secondary source driving signal. Assuming again free-field propagation, G(x|x0, ω) in (32.134) can be
specialized to the free-field Green’s function G0(x − x0, ω). For sound field synthesis, the synthesized
pressure P(x, ω) should be equal to the pressure field of the virtual source S(x, ω) within the listening
area V .

A variety of techniques have been proposed in the past decades to obtain a monopole-only formulation
for sound field synthesis. Here, we only discuss those techniques that have led to the well-known
approaches that will be outlined later in this chapter. In particular

1. modification of the Green’s function employed in the Kirchhoff-Helmholtz integral,
2. the simple source approach, and
3. explicit solution of the single layer potential integral equation.

These three techniques are discussed briefly in the following subsections.

4.32.5.2.1 Neumann Green’s function
The first addend in the Kirchhoff-Helmholtz integral (32.133) can be suppressed by choosing a Neumann
Green’s function GN(x|x0, ω) with

∂

∂n
GN(x|x0, ω)

∣∣∣∣
x0∈∂V

= 0. (32.135)
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Under this condition the Kirchhoff-Helmholtz integral (32.133) simplifies to

P(x, ω) = −
∮

∂V
G N (x|x0, ω)

∂

∂n
S(x0, ω)d A(x0). (32.136)

The explicit form of the Neumann Green’s function depends on the geometry of the boundary ∂V . A
closed form solution can only be found for rather simple geometries like spheres or planar boundaries
[22]. The physical boundary condition (32.135) imposed onto the Neumann Green’s function models
the boundary ∂V as acoustically rigid. For frequencies that are not equal to the resonance frequencies
of the rigid cavity V , the synthesized sound field is equal to the virtual source within V due to the
uniqueness of (32.136). Hence, the driving signal is given as the directional gradient of the pressure of
the virtual source. A major problem of this approach is that the Neumann Green’s function has to be
realized by physically existing secondary sources. Other acoustic sources than monopoles or dipoles are
typically not available in practice, which renders this approach unfeasible. However, it will be shown
later that a sensible approximation of (32.136) forms the basis of WFS.

4.32.5.2.2 Simple source approach and equivalent scattering problem
The second technique, the simple source approach, is based on constructing an acoustic scenario that
results in a single layer potential formulation. One way of doing so is to follow the procedure discussed
in [22] by constructing two equivalent but spatially disjunct problems. Besides the interior Kirchhoff-
Helmholtz integral, given by (32.133), an equivalent exterior Kirchhoff-Helmholtz integral is formulated
with the same boundary ∂V but outward pointing normal vector. Note that in this case the exterior and
interior regions swap places. It is further assumed that the pressure is continuous and the directional
gradient is discontinuous when approaching the boundary ∂V from both sides. These assumptions
represent the presence of a secondary source layer. Subtracting the resulting interior from the exterior
problem formulation derives

P(x, ω) =
∮

∂V
D(x0, ω)G0(x − x0, ω)d A(x0), (32.137)

where D(x0, ω) denotes the driving signal of the secondary sources. The continuity conditions for the
pressure and its gradient on the boundary ∂V can be interpreted in terms of an equivalent scattering
problem [30]. Here, V is replaced by a sound soft object with pressure release boundaries that scatters
the field of the virtual source. The driving signal for the simple source approach is then given as

D(x0, ω) = ∂

∂n
S(x0, ω) + ∂

∂n
PS(x0, ω), (32.138)

where PS(x, ω) denotes the pressure of the scattered field in the exterior region. The field in the interior
region V matches the field of the virtual source S(x, ω). The insights provided by the simple source
approach link the results from acoustic scattering theory to SFS.

4.32.5.2.3 Explicit solution
Equation (32.134) constitutes an integral equation, which can be solved explicitly with respect to the
driving signal D(x0, ω). According to operator theory [31–33], the integral in (32.134) can be understood
as a (compact) Fredholm operator of index zero.
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As stated by Fredholm’s theory [25], a solution can be found when the secondary source distribution
is simply connected and encloses the target volume. The general solution is found by expanding the
operator and the virtual sound field into a series of orthogonal basis functions and a comparison of
coefficients. It is known from operator theory that the solution is not unique at the eigenfrequencies
of the interior homogeneous Dirichlet problem and might be ill-conditioned in practice. Theoretically
suitable basis functions can be found for arbitrary simply connected domains V with a smooth boundary.
In practice analytic basis functions and solutions are only available for regular geometries like spheres,
cylinders and spheroids [15].

The circumstance that the secondary source distribution is required to enclose the target volume
constitutes an essential restriction. As will be shown in Sections 4.32.6.3 and 4.32.7, the Fredholm
solution can also be applied to non-enclosing geometries of the secondary source distributions. Though,
such non-enclosing secondary source distributions exhibit limitations.

4.32.5.3 Three-dimensional synthesis
The particular form of the free-field Green’s function and hence the secondary sources depends on the
dimensionality of the problem. For a continuous distribution of secondary sources on a surface ∂V
surrounding the listening volume V , the three-dimensional free-field Green’s function (32.132) is the
appropriate choice. It can be approximated reasonably well by loudspeakers in a practical realization.
This scenario is termed as three-dimensional synthesis.

It has been shown [34–36] that a three-dimensional synthesis can be perfect whereby certain restric-
tions can apply that are dependent of the geometry of the secondary source distribution.

4.32.5.4 2.5-dimensional synthesis
In many situations the synthesis in a plane only is suitable. This constitutes in principle a two-dimensional
scenario. From a physical point of view, the natural choice for the characteristics of the secondary
sources used for two-dimensional synthesis would be the elementary solution of the wave equation
in two dimensions. The resulting transfer function is given by the two-dimensional free-field Green’s
function, which can be interpreted as the field produced by a line source [22]. Loudspeakers exhibiting
the properties of acoustic line sources are not practical. Using point sources as secondary sources for the
synthesis in a plane results in a dimensionality mismatch, therefore such methods are often termed as
2.5-dimensional synthesis. Ideally the ears of the listeners should be in the same plane like the secondary
sources, the target plane. However it is well known from WFS and HOA, that even then 2.5-dimensional
synthesis techniques suffer from artifacts [35,37]. Most prominent are amplitude deviations with respect
to the sound field of the virtual source. Similar artifacts will also be present in other sound field synthesis
approaches that aim at correct synthesis in a plane using secondary point sources. These limitations are
often discarded in the design of numerical sound field synthesis approaches, a circumstance that can
lead to excess regularization since the desired result is physically impossible.

4.32.5.4.1 Model- versus data-based rendering
In general, sound field synthesis can be performed in either a model-based or a data-based fashion
[38]. With model-based objects, all spatial information such as the location of an object (e.g., a sound
source) or its radiation properties are described by physical models. A given virtual sound source may
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be defined as omnidirectional and being located at a given position that is specified using an appropriate
coordinate system. The associated audio signal is then the “input signal” to this source, e.g., a human
voice or the performance of a musical instrument captured with a single microphone. Another model-
based object could be the virtual venue, the boundary properties of which may be described by an
appropriate physical model.

The audio signals associated to data-based objects on the other hand do contain spatial information.
Examples are the signals of microphone arrangements that are composed of more than one microphone,
e.g., the main microphones of a Stereophonic recording or a spherical or other microphone array. In
the case of data-based rendering, a given sound field synthesis system has to determine the loudspeaker
driving signals such that the spatial information contained in the input signals is preserved in the
presentation. Of course, both model-based as well data-based objects can be apparent in the same
scene. A typical scenario is synthesizing a virtual sound sources of given scene model based and then
adding reverberation obtained from microphone array measurements [39].

Note that the terms model-based and data-based auralization initially referred to auralization based
on either physical room models or databases of measured room impulse responses [40]. Here, the
broader use as explained above is preferred.

We focus in the following on model-based rendering using spatial models for the virtual source.
Often applied models in this context are plane waves, point sources or sources with a prescribed complex
directivity. For the driving signals derived in the following sections we will consider the synthesis of a
plane wave. This special case is suitable to illustrate the basic properties, since other source types can
be expressed as a superposition of plane waves [22].

4.32.6 Near-field Compensated Higher Order Ambisonics (NFC-HOA)
Ambisonics is a collective term for a variety of sound field synthesis approaches applied mainly to cir-
cular or spherical loudspeaker distributions. Data-based rendering is the traditional rendering technique
used in the context of Ambisonics. The expansion coefficients of the desired sound field are extracted
from microphone array recordings, transmitted and then used for derivation of the driving signal, e.g.,
[12,41,42]. This procedure is often referred to as en- and decoding.

For ease of illustration we skip the en- and decoding procedure and consider the direct derivation
of driving functions for the synthesis of virtual sources following the model-based synthesis paradigm.
We review the concept of NFC-HOA based on the analytic formulation presented in [35,43].

4.32.6.1 Outline
Near-field Compensated Higher Order Ambisonics (NFC-HOA), which is also known as Ambison-
ics with distance coding, and related techniques [12,32,35,44,45] base on the explicit solution of the
monopole only synthesis Eq. (32.134) by means of decomposing the quantities involved in (32.134)—
P(x, ω), D(x0, ω), and G(x|x0, ω)—into orthogonal basis functions (Section 4.32.5.2). For the con-
sidered circular and spherical secondary source distributions, these orthogonal basis functions are given
by the surface spherical harmonics and circular harmonics respectively (refer to Sections 4.32.3.5 and
4.32.3.4). Exploitation of the orthogonality of the basis functions leads to a comparison of coefficients
that allows for determining the driving function.
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The synthesis equation (32.134) can be interpreted as a generalized spatial convolution along the
secondary source contour. By identifying the appropriate convolution theorem, the spatial convolution in
(32.134) is turned into a scalar multiplication of given expansion coefficients. It is then straightforward
to calculate the driving signal, if the expansion coefficients of the desired sound field and the spatio-
temporal transfer function of the secondary sources are known. As mentioned in Section 4.32.5.2, the
above described procedure theoretically provides also the solution for geometries other than spherical
or circular. However, the applicability is restricted due to the complexity involved.

Common variants of Ambisonics and HOA can be derived from the general theory discussed above
by varying the model used for the virtual source or the secondary sources. In traditional Ambisonics it
is typically assumed that the secondary sources and the virtual source can be modeled as plane waves
in the center of the secondary source arrangement [46]. This results in driving functions that are simple
amplitude panning laws (refer to Section 4.32.1.2).

4.32.6.2 Spherical secondary source distributions
The synthesis equation (32.134) for an acoustically transparent spherical secondary source distribution
with radius R centered around the coordinate origin is given by [30,35,47]

P(x, ω) =
∫

S2
R

D
(
x0, ω

)
G
(
x, g(x0)η2, ω

)
R2dx0. (32.139)

η2 = [0 0 R]T denotes the north pole of the spherical surface S2
R and x0 = R [cos α0 sin β0

sin α0 sin β0 cos β0]T a location on S2
R . g(x0) is a rotation matrix the explicit expression of which

is waived here for convenience. Refer to the corresponding rotation in the treatment of circular sec-
ondary source distributions in Section 4.32.6.3 for an explicit example of such a rotation matrix.

G
(
x, η2, ω

)
denotes the spatio-temporal transfer function of the secondary source located at η2 =

[0 0 R]T . The factor R2 arises in (32.139) due to the fact that S2
R is of radius R and not 1. Refer to

Figure 32.16 for an illustration of the setup.
Note that (32.139) implies that the spatio-temporal transfer function of the secondary sources is

invariant with respect to rotation around the coordinate origin. In simple words, all secondary sources
need to exhibit similar radiation properties and need to be oriented appropriately. For the considered
free-field conditions, this circumstance does not constitute an essential restriction.

Following the procedure outlined in Section 4.32.5.2.3 requires that P(x, ω), D
(
x, ω

)
, and G

(
x, ω

)
are expanded into appropriate orthogonal basis functions in order to allow for a comparison of the coef-
ficients of the according decomposition. For the geometry under consideration these orthogonal basis
functions are given by the surface spherical harmonics discussed in Section 4.32.3.5. This procedure can
indeed be straightforwardly applied yielding the desired result. However, we will apply the equivalent
procedure from [35], which will later be shown to be applicable also for non-enclosing distributions of
secondary sources.

Equation (32.139) can be interpreted as a convolution along the surface of a sphere in which case
the convolution theorem [48,49]

P̊m
n (r , ω) = R2

√
4π

2n + 1
D̊m

n (ω) · G̊0
n(r , ω) (32.140)
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FIGURE 32.16

Spherical secondary source distribution of radius R centered around the coordinate origin.

applies, which relates the spherical harmonics expansion coefficients (refer to (32.101)) of the involved
quantities via a scalar multiplication. Note that G̊0

n(r , ω) represents the expansion coefficients of
G
(
x, η2, ω

)
, i.e., of the spatio-temporal transfer function of the secondary source located at the north

pole of the sphere.
The asymmetry of the convolution theorem (32.140), P̊m

n (r , ω) vs. G̊0
n(r , ω) is a consequence of

the definition of (32.139) as left convolution. An according convolution theorem for right convolutions
exists [49].

Rearranging (32.140) yields

D̊m
n (ω) = 1

R2

√
2n + 1

4π

P̊m
n (r , ω)

G̊0
n(r , ω)

. (32.141)

When introducing the explicit expressions for the coefficients P̊m
n (r , ω) and G̊0

n(r , ω) given by (32.105)
into (32.141),

D̊m
n (ω) = 1

R2

√
2n + 1

4π

P̆m
n (ω) · jn

(
ω
c r
)

Ğ0
n(ω) · jn

(
ω
c r
) , (32.142)

it can be seen that the parameter r appears both in the numerator as well as in the denominator in
(32.142) in the spherical Bessel function jn

(
ω
c r
)
. It can be shown that the spherical Bessel functions

cancel out except for specific situations [35]. It can indeed happen that (32.142) can be undefined for
jn
(

ω
c r
) = 0 and ω

c r �= 0. These cases represent resonances of the spherical cavity that can not be
controlled by the secondary source distribution. This lack of controllability has not been reported to be
a restriction is practice.
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It may be assumed that all Bessel functions in (32.141) cancel out yielding

D̊m
n (ω) = 1

R2

√
2n + 1

4π

P̆m
n (ω)

Ğ0
n(ω)

. (32.143)

In order that (32.143) holds, Ğ0
n(ω) may not exhibit zeros. This requirement is fulfilled for the three-

dimensional free-field Green’s function [35].
The secondary source driving function D(α, β, ω) can be composed from its coefficients D̊m

n (ω)

using (32.104) to be [30,35,47]

D(α, β, ω) =
∞∑

n=0

n∑
m=−n

1

R2

√
2n + 1

4π

P̆m
n (ω)

Ğ0
n(ω)︸ ︷︷ ︸

=D̊m
n (ω)

Y m
n (β, α). (32.144)

In practical applications, the summation in (32.144) can not be performed over an infinite number of
addends but has to be truncated. The choice of the summation limits primarily has impact on the artifacts
arising in practice. This circumstance will be discussed more in detail in Section 4.32.6.4 conjunction
with circular NFC-HOA.

4.32.6.3 Circular secondary source distributions
The specialization of (32.134) to a circular distribution of secondary sources in the horizontal plane and
centered around the coordinate origin is given by

P(x, ω) =
∫ 2π

0
D
(
x0, ω

)
G
(
x, g(α0)η1, ω

)
R dα0, (32.145)

where R denotes the radius of, and x0 = R[cos α0 sin α00]T a location on, the circular secondary
source distribution S1

R . η1 = [R 0 0]T denotes that point on the distribution where α0 = 0. g(α0) is a
rotation matrix given by

g(α0) =
⎡
⎣ cos α0 − sin α0 0

sin α0 cos α0 0
0 0 1

⎤
⎦ .

G(x, η1, ω) in (32.145) denotes the spatio-temporal transfer function of the secondary source located
at η1. Refer to Figure 32.17 for a sketch of the setup.

Equation (32.145) can be interpreted as a convolution along a circle and thus the convolution theorem
[22]

P̊m(r , ω) = 2π R D̊m(ω)G̊m(r , ω) (32.146)

holds, which relates the Fourier series expansion coefficients (i.e., the circular harmonics coefficients,
refer to (32.70)) of the involved quantities (Section 4.32.3.4). Note that the relation between the Fourier
series expansion coefficients and the spherical harmonics expansion coefficients is given by (32.107).
G̊m(r , ω) represents the expansion coefficients of G

(
x, η1, ω

)
.
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FIGURE 32.17

Circular secondary source distribution of radius R in the horizontal plane and centered around the coordinate
origin.

Equation (32.146) can be solved for the coefficients D̊m(ω) of the driving function D(α0, ω). The
latter can then be composed from its coefficients via (32.73). Unlike with spherical secondary source
distributions, the driving function D(α0, ω) is generally dependent on the radius r . As a consequence,
the synthesized sound field will only be correct on a circle around the center of the coordinate origin.
Deviations arise at all other locations. This is a typical case of 2.5-dimensional synthesis as described
in Section 4.32.5.4.

Referencing the driving function to the origin of the coordinate system has shown to be most conve-
nient. After some mathematical manipulation, the driving function D(α, ω) can finally be shown to be
[35]

D(α, ω) =
∞∑

m=−∞

1

2π R

P̆m|m|(ω)

Ğm|m|(ω)
eimα. (32.147)

Note that P̆m|m|(ω) and Ğm|m|(ω) denote the spherical harmonics expansion coefficients P̆m
n (ω) and Ğm

n (ω)

of P( · ) and G( · ) for n = |m|.
The coefficients P̆m|m|(ω) for a plane wave with incidence angle (θpw, ϕpw) can be deduced from

(32.99) to be
P̆m|m|(ω) = Y m∗

|m| (θpw, ϕpw). (32.148)

For omnidirectional secondary sources

Ğm|m|(ω) = 1

4π
i−|m|−1 ω

c
h(2)

|m|
(ω

c
R
)

Y m|m|
(π

2
, 0
)

, (32.149)

where h(2)
|m| denotes the |m|th-order spherical Hankel function of second kind [22].

Assuming that a desired plane wave P(x, ω) propagates in the horizontal plane (i.e., θpw = π/2)
and carries the signal Ŝ(ω), the driving function can be determined to be [50]

Dpw(α0, ω) = Ŝ(ω)

∞∑
m=−∞

2i |m|+1

R ω
c h(2)

|m|
(

ω
c R
)eim(α0−ϕpw), (32.150)
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by exploiting the fact that the associated Legendre functions Pm
n (·), which are contained in the spherical

harmonics Y m
n (·) (see (32.87)), never vanish when their order m equals their degree n [24, Eq. (2.1.50)]

so that they cancel out.

4.32.6.4 Spatial sampling and application example
Continuous secondary source distributions as discussed so far can not be implemented in practice but
discrete setups of a finite number of loudspeakers have to be used. In the following, we briefly discuss
the effects of this spatial sampling of the secondary source distribution. Detailed discussions can be
found in [2,51,52].

It can be shown that an equiangular sampling leads to repetitions of the Fourier coefficients of the
driving function as [52]

D̊m,S(ω) =
∞∑

μ=−∞
D̊m+μL(ω), (32.151)

where L denotes the number of secondary sources employed and D̊m,S(ω) denotes the Fourier series
coefficients of the sampled driving function.

At first stage, the continuous driving function is not bandlimited with respect to the expansion order
m, i.e., according to (32.147) the summation over the coefficients D̊m(ω) has to be performed from
m = −∞ to m = ∞. As a consequence, the repetitions that are apparent in (32.151) overlap and
interfere.

In order to avoid such overlap the continuous driving function is typically spatially bandlimited, i.e.,
the summation in (32.147) is calculated for m = −L/2 +1 to m = L/2 −1 for even L and accordingly
for odd L . Obviously, such a spatial band limitation causes a loss of information. This is illustrated
in Figure 32.18, which shows a virtual plane wave impinging from ϕpw = −π/2 synthesized by a
circular distribution of L = 56 monopole secondary sources. The geometry is chosen equal to a system
built by the authors. At low frequencies, neither the bandwidth limitation nor the spectral repetitions
impair the synthesized sound field as depicted in Figure 32.18a. The undesired amplitude decay, which
is characteristic for 2.5-dimensional synthesis, is apparent (Section 4.32.5.4).

At higher frequencies though, the imposed bandwidth limitation causes a concentration of the energy
of the desired component of the sound field around the center of the secondary source distribution. This
is evident in Figure 32.18b. Outside this artifact-free zone, artifacts arise, which are a consequence of
the spectral repetitions. The size of the artifact-free zone decreases linearly with increasing frequency.

Of course, it is also possible to choose a spatial bandlimit such that is significantly higher than the
one chosen in the Ambisonics context. This does indeed essentially change the properties of the arising
artifacts. It has been shown in [52] that a large spatial bandwidth leads to artifacts that are similar to
those arising in Wave Field Synthesis as discussed in Section 4.32.8.

As apparent from Figure 32.18b, considerable artifacts arise even at moderate frequencies. The
perceptual consequences of these artifacts have not been investigated in detail so far. However, typical
loudspeaker setups used for NFC-HOA have shown to provide improved properties for a central listening
position when compared to traditional stereophonic techniques [53].
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FIGURE 32.18

Sound field P (x, ω) synthesized by a circular distribution of L = 56 secondary monopole sources and of
radius R = 1.50 m when driven with 2.5-dimensional NFC-HOA. The virtual sound field is a monochromatic
plane wave of frequency fpw and with incidence angle ϕpw = −π/2. Click Video clips 1 and 2 to see the
animation.

4.32.6.5 Extensions to basic principle
The above presented approach has been extended in various ways to enable the synthesis of complex
virtual sound fields such as that of focused sources [54–56] or of sound sources with complex radiation
properties [57–60] or to enable the employment of non-spherical enclosing secondary source distribu-
tions [33] and non-omnidirectional secondary sources [61,62] and active listening room compensation
[63,64].

4.32.7 Spectral division method (SDM)
The Spectral Division Method employs the explicit solution to the synthesis equation (32.134) for planar
and linear distributions of secondary sources. The following section provides a brief overview of the
theory as presented in [34,65,66].

4.32.7.1 Planar secondary source distributions
Consider the synthesis equation (32.134) and assume a secondary source distribution ∂V that consists
of a disk V0 and a hemisphere Vhemi of radius rhemi as depicted in Figure 32.19 [22]. As rhemi → ∞, the
disk V0 turns into an infinite plane and the volume under consideration turns into a half-space. The latter
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Vi

V0

Vhemi

rhemi

FIGURE 32.19

Cross-section through a boundary consisting of a hemisphere and a disc.

is referred to as target half-space. Additionally, the Sommerfeld radiation condition2 is invoked, i.e.,
it is assumed that there are no contributions to the desired sound field to be synthesized that originate
from infinity so that only the planar part of the boundary needs to be considered. We additionally allow
for the synthesis of plane waves that propagate into the target half-space. The Rayleigh integral can
be used to prove that such plane waves can indeed be synthesized by the considered secondary source
distribution [66].

As a consequence, arbitrary sound fields that are source-free in the target half-space and that satisfy
the Sommerfeld radiation condition (as well as plane waves) may now be described by an integration
over the infinite plane V0. For convenience, it is assumed in the following that the boundary of the target
half-space (i.e., the secondary source distribution) is located in the x-z-plane, and the target half-space
is assumed to include the positive y-axis as depicted in Figure 32.20.

The formulation of the synthesis equation (32.134) for an infinite uniform planar secondary source
distribution is then given by [34,65,66]

P(x, ω) =
∫∫ ∞

−∞
D(x0, ω) · G(x − x0, ω)dx0dz0. (32.152)

with x0 = [x0 0 z0]T . G(x, ω) denotes the spatial transfer function of a secondary source located in the
origin of the coordinate system. The term G(x − x0, ω) in (32.152) implies that the spatio-temporal
transfer function of the secondary sources is invariant with respect to translation along the secondary
source contour [22]. In other words, all secondary sources exhibit equal radiation properties and are
orientated accordingly. Note the resemblance of (32.152) to the first Rayleigh integral [22].

2The Sommerfeld radiation condition can be interpreted as a boundary condition at infinity. It assures that no energy originates
from infinity.
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x

y

z

← y = 0

FIGURE 32.20

Illustration of the setup of a planar secondary source situated along the x -z -plane. The secondary source
distribution is indicated by the gray shading and has infinite extent. The target half-space is the half-space
bounded by the secondary source distribution and containing the positive y -axis.

Equation (32.152) essentially constitutes a two-dimensional convolution along the spatial dimensions
x and z respectively. This fact is revealed when (32.152) is rewritten as [34,66]

P(x, ω) =
∫∫ ∞

−∞
D
(
[x0 0 z0]T, ω

)
G
(
[x y z]T − [x0 0 z0]T, ω

)
dx0dz0

=
∫∫ ∞

−∞
D(x0, 0, z0, ω)G(x − x0, y, z − z0, ω)dx0dz0

= D
(
x |y=0 , ω

) ∗x ∗zG(x, ω), (32.153)

where the asterisk ∗i denotes convolution with respect to the indexed spatial dimension [67]. Thus, the
convolution theorem [67]

P̃
(
kx , y, kz, ω

) = D̃
(
kx , kz, ω

) · G̃
(
kx , y, kz, ω

)
(32.154)

holds, which relates the involved quantities in wavenumber domain with respect to kx and kz . Refer to
Section 4.32.3.3 for a discussion of the Fourier transform with respect to space.

The secondary source driving function D̃
(
kx , kz, ω

)
in the wavenumber domain is given by

D̃
(
kx , kz, ω

) = P̃
(
kx , y, kz, ω

)
G̃
(
kx , y, kz, ω

) . (32.155)

Author’s personal copy



4.32.7 Spectral Division Method (SDM) 965

In order that (32.155) holds, G̃(kx , y, kz, ω) may not exhibit zeros. This is indeed fulfilled e.g., for
monopole secondary sources [34].

Applying an inverse spatial Fourier transform with respect to kx and kz on (32.155) yields [34,65,66]

D(x, z, ω) = 1

4π2

∫∫ ∞

−∞
P̃
(
kx , y, kz, ω

)
G̃
(
kx , y, kz, ω

)ei
(
kx x+kz z

)
dkx dkz . (32.156)

From (32.155) it is obvious that the driving function is essentially yielded by a division in the spatial
frequency domain. The presented approach is therefore referred to as Spectral Division Method (SDM).

Equation (32.156) suggests that D(x, z, ω) is dependent on the distance y of the receiver to the
secondary source distribution since y is apparent on the right hand side of (32.156). It is shown in
[2,34,66] that y does indeed cancel out provided that the target half-space is free of virtual sound
sources. D(x, z, ω) is thus independent of the location of the receiver.

4.32.7.2 Linear secondary source distributions
Despite the simple driving function for planar secondary source distributions, this setup will be rarely
implemented due to the enormous amount of loudspeakers necessary. Typically, audio presentation
systems employ linear arrays or a combination thereof [68]. Assuming a linear secondary source distri-
bution of infinite length, the situation may be interpreted as a reduced formulation of the setup treated in
Section 4.32.7.1. For convenience, the secondary source distribution is assumed to be along the x-axis
(thus x0 = [x0 0 0]T , refer to Figure 32.21).

x

y

z

y = yref

FIGURE 32.21

Illustration of the setup of a linear secondary source distribution situated along the x -axis. The secondary
source distribution is indicated by the gray shading and has infinite extent. The target half-plane is the
half-plane bounded by the secondary source distribution and containing the positive y -axis. Thin dotted line
indicates the reference line (see text).
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The specialization of the synthesis equation (32.134) to such a linear distribution of secondary sources
along the x-axis is given by

P(x, ω) =
∫ ∞

−∞
D(x0, ω)G(x − x0, ω)dx0, (32.157)

where x0 = [x0 0 0]T and G(x, ω) denotes the spatio-temporal transfer function of that secondary
source located in the coordinate origin. Equation (32.157) implies again that the spatio-temporal transfer
function of the secondary sources is invariant with respect to translation along the secondary source
contour.

For the sake of simplicity it is assumed that the listeners’ ears are located in that half of the x-y-plane
that contains the positive part of the y-axis (z = 0, y > 0). Refer to [34] for a generalization. Equation
(32.157) essentially constitutes a spatial convolution of the driving function D(x, ω) with the spatial
transfer function G(x, ω) of the secondary source at the coordinate origin, whereby the convolution
takes place along the x-axis. Again, the convolution theorem (32.154) of the Fourier transformation can
be applied, though in the present case exclusively with respect to kx . Explicitly,

P̃(kx , y, ω) = D̃(kx , ω)G̃(kx , y, ω), (32.158)

where kx denotes the wavenumber in x-direction. Equation (32.158) can now be solved straightforwardly
with respect to the driving function D̃(kx , ω) in wavenumber domain. D(x, ω) is then obtained by
applying an inverse spatial Fourier transformation (32.44) given by [34,65,66]

D(x, ω) = 1

2π

∫ ∞

−∞
P̃(kx , y, z, ω)

G̃(kx , y, z, ω)
eikx x dkx . (32.159)

In order for (32.159) to hold, G̃(kx , y, z, ω) may not exhibit zeros. This is indeed fulfilled e.g., for
monopole secondary sources as can be deduced from (32.162).

As discussed in detail in [34], the driving function (32.159) has to be referenced to a line parallel to
the x-axis, which is then the only location where the synthesized sound field is exact. As with circular
distributions of secondary sources (Section 4.32.6.3), the present situation constitutes 2.5-dimensional
synthesis as discussed in Section 4.32.5.4.

Since we are aiming at the synthesis in the horizontal plane, we reference the driving function
(32.159) to z = 0 and y = yref as indicated in Figure 32.21. The referenced driving function D(x, ω)

is then given by

D(x, ω) = 1

2π

∫ ∞

−∞
P̃(kx , yref, 0, ω)

G̃(kx , yref, 0, ω)
eikx x dkx . (32.160)

When choosing a plane wave with propagation direction
(
θpw = π

2 , ϕpw
)

carrying the signal Ŝ(ω) as
desired sound field, then P̃(kx , yref, 0, ω) can be obtained from (32.46) as

P̃(kx , yref, 0, ω) = Ŝ(ω)2πδ(kx − kpw,x )e
ikpw,y yref . (32.161)

G̃(kx , yref, 0, ω) for omnidirectional secondary sources is given by [34]

G̃(kx , y, z, ω) = − i

4
H (2)

0

(√(ω

c

)2 − kx
2
√

y2 + z2

)
∀0 ≤ |kx | <

∣∣∣ω
c

∣∣∣ , (32.162)

where H (2)
0 ( · ) denotes the zeroth-order Hankel function of second kind [69].

Author’s personal copy



4.32.7 Spectral Division Method (SDM) 967

Inserting (32.161) and (32.162) into (32.160) yields [34]

Dpw(x0, ω) = Ŝ(ω)
4iei ω

c yref sin ϕpw

H (2)
0 (ω

c yref sin ϕpw)
ei ω

c x0 cos ϕpw . (32.163)

4.32.7.3 Spatial sampling and application example
As for NFC-HOA, we briefly discuss the effects of spatial sampling of the secondary source distribution.
An equidistant sampling with distance�x between the secondary sources can be modeled by multiplying
the driving function (32.163) with a series of spatial Dirac pulses. This results in spectral repetitions in
the spatio-temporal frequency domain [70]

D̃S(kx , ω) = 2π

∞∑
μ=−∞

D̃

(
kx − 2π

�x
μ,ω

)
. (32.164)

Typical driving functions (e.g., for plane or spherical waves) are not bandlimited with respect to the
spatial frequency kx . The spectral repetitions indicated in (32.164) can therefore overlap and leak into
the baseband. The latter is constituted by the continuous driving function, i.e., (32.164) evaluated for
μ = 0.

Reformulating (32.158) considering the sampled driving function D̃S(kx , ω) reads

P̃S(kx , y, ω) = D̃S(kx , ω)G̃(kx , y, ω). (32.165)

It is evident from (32.165), the synthesized sound field P̃S(kx , y, ω) is given by the driving function
D̃S(kx , ω) weighted by the secondary sources’ transfer function G̃(kx , y, ω). Using a simplified model,
it may be assumed that G̃(kx , y, ω) is spatially lowpass [51]. This means that it does not alter D̃S(kx , ω)

when |kx | is smaller but heavily attenuates D̃S(kx , ω) for large |kx |.
At low angular frequencies ω (and thus at low time frequencies f ), the spectral repetitions indicated

in (32.164) to not corrupt the baseband and they are attenuated by the spatial lowpass property of
G̃(kx , y, ω) [51]. As a consequence, the synthesized sound field is not impaired at low time frequencies
f . Refer to Figure 32.22a for an example.

At higher frequencies f , the spectral repetitions due to spatial sampling do corrupt the baseband
and therefore also the synthesized sound field. The latter is then composed of the desired sound field
superposed by additional undesired wave fronts [51,70]. Refer to Figure 32.22b for an example. For
practical setups, the frequency above which considerable artifacts arise is relatively low. When the
synthesis of a plane wave is considered, the highest frequency f that can be synthesized without or with
only moderate corruption can be calculated via [37]

f = c

�x(1 + | cos ϕpw|) . (32.166)

For the setup depicted in Figure 32.22, this frequency is approximately 1000 Hz.
Recall that the audible bandwidth typically exceeds 16 kHz. A significant part of the spectrum is thus

corrupted. Though, the human auditory system does not seem to be very sensitive to spatial aliasing
artifacts for stationary scenarios [71]. The scenario illustrated in Figure 32.22 results in only minor
perceptual impairment even when the entire audible frequency range is employed.
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FIGURE 32.22

Snapshot of the sound field P (x, ω) synthesized by a linear distribution of secondary monopole sources
with a spacing of �x = 0.2 m driven with SDM. The virtual sound field is a monochromatic plane wave of
frequency fpw impinging from direction ϕpw = −(3/4)π referenced to yref = 1 m. Click Video clips 3 and 4
to see the animation.

4.32.7.4 Approximate solution for non-planar and non-linear secondary source
distributions

As pointed out in [30], it is helpful to interpret sound field synthesis by considering the equivalent
problem of scattering of sound waves at a sound-soft object whose geometry is identical to that of
the secondary source distribution. Sound-soft objects exhibit ideal pressure release boundaries, i.e., a
homogeneous Dirichlet boundary condition is assumed.

When the wavelength λ of the wave field under consideration is much smaller than the dimensions
of the scattering object and when the object is convex the so-called Kirchhoff approximation or physical
optics approximation can be applied [9]. The surface of the scattering object is divided into a region
that is illuminated by the incident wave, and a shadowed area. The problem under consideration is then
reduced to far-field scattering off the illuminated region whereby the surface of the scattering object
is assumed to be locally plane. The shadowed area has to be discarded in order to avoid an unwanted
secondary diffraction [9]. The convexity is required in order to avoid re-entry of the scattered sound
field.

For such small wave lengths, any arbitrary simply connected convex enclosing secondary source
distribution may also be assumed to be locally plane. Consequently, when the driving function (32.156)
for planar secondary source distributions is applied in such a scenario, a high-frequency approximation
of the driving function is obtained when only those secondary sources are driven that are located in
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kpw

kpw
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FIGURE 32.23

Secondary source selection for a virtual plane wave with propagation direction kpw. Thick solid lines indicate
the area that is illuminated by the virtual sound field. The illuminated area corresponds to the active secondary
sources. The dashed line indicates the shadowed part of the secondary source distribution. The two dotted
lines are parallel to kpw and pass the secondary source distribution in a tangent-like manner. In case A
tapering may be applied, in case B not.

that region that is illuminated by the virtual sound field. A similar argumentation may be deployed in
conjunction with linear secondary source distributions.

The better the assumptions of the physical optics approximation are fulfilled, most notably the wave
length under consideration being significantly smaller than the dimensions of the secondary source
distribution, the smaller is the resulting inaccuracy. A further analysis of this inaccuracy may be found
in [51,72].

The illuminated area can be straightforwardly determined via geometrical considerations as indicated
in Figure 32.23. For a virtual plane wave, the illuminated area is bounded by two lines parallel to the
propagation vector kpw of the plane wave passing the secondary source distribution in a tangent-like
manner.

If the proper tangent on the boundary of the illuminated area is not parallel to kpw or is not defined
(like the boundary of a planar distribution of finite size), a degenerated problem is considered (case A
in Figure 32.23). That means, the illuminated area is incomplete and artifacts have to be expected. The
perceptual prominence of such spatial truncation artifacts can be reduced by the application of tapering,
i.e., an attenuation of the secondary sources towards the edges of the illuminated area. Tapering is a
well-established technique in the context of WFS [73].

It has been shown that the illuminated area does not need to be smooth. Corners are also possible
with only little additional error introduced [37]. This is also evident from Figure 32.24a, which shows
the synthesis of a virtual plane wave by a rectangular distribution of monopoles driven with SDM. The
secondary source driving function was deduced from (32.163) via an appropriate translation and rotation
of the coordinate system. Since this scenario constitutes 2.5-dimensional synthesis, the synthesized
sound field exhibits an undesired amplitude decay.
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FIGURE 32.24

A cross-section through the horizontal plane of the sound pressure Ppw(x, ω) synthesized by different sec-
ondary monopole distribution driven with SDM synthesizing a virtual plane wave of fpw = 1000 Hz and
unit amplitude with incidence angle ϕpw = 7

6π referenced to yref = 1.0 m. Solid lines indicate the illumi-
nated area; dotted lines indicate the shadowed area. (a) Rectangular secondary distribution and (b) circular
secondary source distribution. Click Video clips 5 and 6 to see the animation.
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Figure 32.24b depicts the synthesis of a virtual plane wave by a circular distribution of monopoles
driven with SDM. This circular distribution may be interpreted as a combination of linear sections of
infinitesimal length. Due to the different geometry of the secondary source contour, the amplitude decay
of the synthesized sound field is slightly different to the one in Figure 32.24a.

4.32.8 Wave Field Synthesis (WFS)
Wave Field Synthesis constitutes an approximation of the approach to monopole only synthesis that
is based on the application of a Neumann Green’s function. The physical foundation of this approach
is given in Section 4.32.5.2. This section outlines its application in the context of WFS and presents
application examples.

4.32.8.1 Outline
The concept of WFS has initially been developed for linear distributions of secondary sources [74]. It
bases on a sensible approximation of (32.136). Similar arguments as given in Section 4.32.7 for the
SDM, can be used to derive a representation of (32.136) for planar geometries. The required Neumann
Green’s function GN(x|x0, ω) for this specialized geometry is given by two times the free-field Green’s
function GN(x|x0, ω) = 2G0(x − x0, ω). The resulting integral is known as Rayleigh’s first integral
equation [22]. The initial concept of WFS is implicitly based on a specialization of Rayleigh’s first
integral formula to 2.5-dimensional synthesis. This specialization is derived by degenerating the planar
secondary source distribution to a linear distribution using a stationary phase approximation [37,73,74].

WFS has later on been generalized to arbitrary convex secondary source distributions, which may
even only partly enclose the receiver area [36,73]. This generalization can be deduced also from (32.136)
as is illustrated in the following. The Neumann Green’s function in (32.136) has to fulfill homogeneous
Neumann boundary conditions imposed on ∂V . Consequently, reflections are included that are caused
by the rigid boundary. Since (32.136) provides a unique solution (discarding the eigenfrequencies of
the rigid cavity), these reflections will be compensated for by the driving function. As mentioned above,
secondary sources with the characteristics of a Neumann Green’s function are generally not available
for complex geometries. Hence, it is desirable to use secondary sources with the characteristics of a
free-field Green’s function. WFS is based on an approximation of (32.136) by

1. replacing the Neumann Green’s function by the free-field Green’s function,
2. limiting the integration path, and
3. prescribing a convex secondary source distribution.

In many practical situations the free-field Green’s function can be seen as a far-field/high-frequency
approximation of the Neumann Green’s function when considering only the interior V of the secondary
source contour [72]. Hence, the Neumann Green’s function used in (32.136) can be realized by sec-
ondary sources exhibiting monopole characteristics. However, as discussed above, the driving function
inherently copes with the reflections caused by the Neumann Green’s function. These reflections are
not present when using monopole sources and consequently do not need to be compensated. This can
be accounted for by not those driving secondary sources that compensate for these reflections, by taking
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care that only those secondary sources are active that are located in the area that is illuminated by the
virtual sound field. This can be formulated by introducing the window function a(x0) into (32.136)

P(x, ω) = −
∮

∂V
2a(x0)

∂

∂n
S(x0, ω)︸ ︷︷ ︸

D(x0,ω)

G0(x − x0, ω)d A(x0). (32.167)

An alternative motivation for a(x0) is outlined in Section 4.32.7.4.
The geometry of the boundary ∂V has to be restricted to convex contours in order to avoid that

contributions reenter the listening area V . Equation (32.167) constitutes an approximation of (32.136),
which has been shown to be of special interest for sound reproduction. Equation (32.167) states that the
driving function for WFS is given as

D(x0, ω) = 2a(x0)
∂

∂n
S(x0, ω). (32.168)

The window function for selection of the active secondary sources for a plane wave as virtual source is
given as [75]

apw(x0) =
{

1, if 〈npw, n(x0)〉 > 0,

0, otherwise.
(32.169)

Equation (32.168) is valid for arbitrary convex secondary source contours ∂V . It depends only on
local quantities. This is contrary to NFC-HOA and SDM where the driving functions are restricted
to a particular geometry and their dependence is non-local. The next section illustrates the practical
application of WFS to three- and 2.5-dimensional synthesis.

4.32.8.2 Three-dimensional synthesis
The Green’s function used in the synthesis equation (32.167) determines the characteristics of the
secondary sources. The specific form of the free-field Green’s function depends on the dimensionality
of the problem. The three-dimensional free-field Green’s function is given by (32.132) which can be
interpreted as the field of a point source with monopole characteristics located at the position x0.

Three-dimensional WFS can be realized by surrounding the listening volume V by a continuous
distribution of point sources placed on the boundary ∂V . These secondary sources are driven by the
secondary source driving function (32.168). The driving function is given by the directional gradient of
the virtual source’s sound field and the window function a(x0). Hence, the explicit form of the driving
function depends on the virtual source and the geometry of the secondary source distribution. The
driving function for a plane wave carrying the signal Ŝpw(ω) is determined by the direction gradient of
the sound field of a plane wave (32.29) and the window function (32.169) as

Dpw,3D(x0, ω) = 2apw(x0)
nT

pwn(x0)

c
iωŜpw(ω)ei ω

c nT
pw x0 . (32.170)

A time-domain version of the driving function (32.170) is useful to derive an efficient implementation
of WFS. Inverse Fourier transformation of (32.170) yields

dpw,3D(x0, t) = 2apw(x0)
nT

pwn(x0)

c

d

dt
ŝpw

(
t − nT

pwx0

c

)
, (32.171)
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where the differentiation theorem of the Fourier transformation was used. Equation (32.171) states that
the driving signal for a plane wave can be computed efficiently in the time-domain by weighting the
derivative of the time-shifted source signal ŝpw(t). However, the differentiation of the virtual source
signal may also be performed by filtering the signal by a filter with iω-characteristic.

A planar secondary source distribution is the basic building block of a cuboid shaped reproduction
system. A planar distribution will be discussed in detail in the sequel. The closed contour integral
(32.136) over the surface ∂V can be degenerated to an integral over an infinite plane. In brief, this
degeneration is achieved by splitting the closed contour ∂V into a planar boundary and a half-sphere.
The integration over the half-sphere can be omitted by applying the Sommerfeld radiation condition
[22]. This procedure was outlined in Section 4.32.7.1 in conjunction with SDM.

It will be assumed in the following, without loss of generality, that the secondary source distribution
is located on the xz-plane at y = 0 as depicted in Figure 32.20. Other cases can be regarded as simple
translation or rotation of this special case.

The synthesized sound field for a planar distribution of secondary point sources on the xz-plane is
given as

P(x, ω) = −
∫∫ ∞

−∞
D3D(x0, ω)G0,3D(x|x0, ω)dx0dz0, (32.172)

with x0 = [x0 0 z0]T . Equation (32.172) is known as the first Rayleigh integral. The synthesized sound
field P(x, ω) will be mirrored at the secondary source distribution as a consequence of the Neumann
boundary condition (32.135). Hence, the reproduced wave field is only correct in one of the two half-
volumes separated by the secondary source distribution. The direction of the normal vector n specifies
the considered half-volume.

The synthesized sound field for a planar continuous distribution of infinite size will exactly match
the wave field of the virtual source within the listening area. This can be proven by inserting the driving
functions into the synthesis equation (32.172). Artifacts will occur for other geometries of the secondary
source distribution. This is due to the fact that the derived Neumann Green’s function only fulfills the
required Neumann boundary condition exactly in this special case.

4.32.8.3 2.5-Dimensional synthesis
Typical realizations of WFS use secondary source distributions that are located on the boundary ∂V of
a planar listening area V . As already discussed in Section 4.32.5.4, this constitutes a 2.5-dimensional
scenario when point sources are used a secondary sources. Since WFS is not based on an explicit solution
of the underlying mathematical formulation this fact has to be taken into account explicitly.

Traditionally a stationary phase approximation has been applied to (32.167) in order to derive the
driving function for 2.5-dimensional reproduction [37]. This procedure results in a spectral correction
and a listener dependent amplitude correction. A more instructive approach is followed here. A large-
argument approximation of the Hankel function is used to derive the following far-field approximation(

ω
c |x − x0| � 1

)
of the two-dimensional Green’s function

G2D(x − x0, ω) ≈
√

2π |x − x0|
i ω

c

1

4π

e−i ω
c |x−x0|

|x − x0| . (32.173)
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It can be concluded from (32.173) that a line source can be approximated in the far-field by a point
source the spectrum and amplitude of which are corrected. The amplitude correction depends on the
observation point x. Hence, this correction holds strictly only for one reference point xref. Calculating
the directional gradient of a plane wave and introducing (32.173) into (32.168) results in the driving
signal for the 2.5-dimensional synthesis of a plane wave

Dpw,2.5D(x0, ω) = 2wpw(x0)Ŝpw(ω)

√
i
ω

c
c2.5D(x0)nT

pwn(x0)e
−i ω

c nT
pw x0 , (32.174)

where npw = [cos θpw sin θpw]T denotes the normal vector of the plane wave and c2.5D(x0) a geometry
dependent amplitude factor for 2.5-dimensional reproduction. The amplitude correction may be derived
from (32.174). However, it has been shown [37] that the amplitude can be corrected also for a reference
line that is parallel to the secondary source distribution.

4.32.8.4 Spatial sampling and application example
As with any other method, practical implementations of WFS systems will not consist of a continuous
secondary source distribution but of a limited number of secondary sources placed at discrete positions.
Two types of artifacts may emerge from spatial truncation and discretization: (1) truncation and (2)
spatial aliasing artifacts. Truncation artifacts can be improved by applying a spatial window function
(tapering window) to the driving function [37].

The spatial sampling can be modeled in a similar manner as shown for NFC-HOA and the SDM in
Sections 4.32.6.4 and 4.32.7.3, respectively. An detailed analysis of the spatial sampling artifacts for
linear and circular WFS systems can be found e.g., in [70].

The same circular geometry as in Section 4.32.6.4 for NFC-HOA is used as application example in
order to facilitate the comparison of both approaches. As for NFC-HOA and SDM this constitutes a
2.5-dimensional scenario. Figure 32.25 shows the synthesized sound field for two different frequencies
of the considered virtual plane wave. For 1 kHz, the synthesized sound field shows no obvious artifacts.
However, when comparing Figure 32.25a with Figure 32.18a some inaccuracies can be observed close
to the secondary sources for WFS. This is due to the approximations applied for the derivation of
the driving function in WFS. Figure 32.25b shows the situation for 2 kHz. In comparison with Figure
32.18b it is clearly visible that WFS does not exhibit a pronounced area where the synthesis is more
accurate. Sampling artifacts are rather evenly distributed over the receiver area, especially at very high
frequencies. The amplitude decay in the synthesized plane wave, due to the 2.5-dimensional approach,
is clearly visible in Figure 32.25a.

4.32.8.5 Extensions to basic principle
Similarly to NFC-HOA, the basic WFS principle has been extended to the synthesis of various virtual
source types such as focused sources [37], sources with complex radiation properties [76], or moving
sources [77–79], as well as compensation for loudspeaker directivity [80], auralization of microphone
array recordings [39,81], and active listening room compensation [64,82].

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/
10.1016/B978-0-12-396501-1.00032-7.
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FIGURE 32.25

Sound field P (x, ω) synthesized by a circular distribution of L = 56 secondary monopole sources and of
radius R = 1.50 m when driven with by 2.5-dimensional WFS. The virtual sound field is a monochromatic
plane wave of frequency fpw and with incidence angle ϕpw = −π/2. Filled loudspeaker symbols indicate
active secondary sources, hollow loudspeaker symbols indicate in active ones. Video clips 7 and 8 to see the
animation.
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