

Working with WFSCollider

Arthur Sauer and Wouter Snoei

The Game Of Life Foundation

Version 2.2.4

 2

Working with WFSCollider

Table of contents

Starting up ... 5
Installing WFSCollider on your computer .. 5
Opening WFSCollider ... 6

About WFSCollider .. 8
Copyrights ... 8
Unit and WFS Libraries .. 8

Basic elements ... 10
Score (UScore) .. 10
Event (UEvent) .. 10
Chain (UChain) .. 10
Unit (U) ... 11
Udef (Udef) ... 11
UMap / UMapDef ... 12
Marker (UMarker) ... 13
EQ (UGlobalEQ) ... 13
Level (UGlobalGain) .. 13
Bar/beat vs. time (TempoMap/BarMap) .. 13
Folders / nested Scores .. 13
Presets (PresetManager) .. 13
Point (Point) ... 14
Static and dynamic sources ... 15
Amplitude model ... 16
Distance filter .. 16
Latency compensation / Doppler reduction 17
Path /Trajectory (WFSPath) .. 18
WFS Position Tracker (WFSPositionTracker) 19
WFS Speaker Configuration (WFSSpeakerConf) 19
WFS Preview Mode (WFSLib.previewMode) 20
Server(s) ... 21
Parallel architecture .. 21
Synchronization .. 22
Latency ... 22

The Menus .. 24
Score ... 24
Session .. 25
Window ... 27
Help .. 27

Interface (or GUI) .. 28
Server window .. 28
Post window .. 28
Score window .. 29

 3

interface elements on the top of the window ... 29
interface elements on the bottom of the window 31
mouse ... 33

Chain window .. 34
interface elements in the toolbar ... 34
parameters window ... 36
mouse ... 37
UMaps ... 37
code window ... 38
i/o window ... 40

Mass edit window .. 42
Udefs window .. 45
Marker window ... 47
Plot window for WFSPaths .. 49

Tools in the toolbar .. 50
The Speed and Time display at the bottom of the window 51

Path Editor .. 52
Tools on the right-hand side of the window ... 52

Path generator .. 56
The generator processes in the Path Generator 58

More about Units and UChains .. 63
Signal flow .. 63
Bouncing ... 65
Multi-channel operation .. 66
Live input .. 68

More about UMaps .. 70
Nested UMaps ... 70
Expand .. 72
Shared values .. 73
Shared points .. 75

Appendix A: Udef and UMapDef reference 77
Udefs ... 77

distortion ... 77
dynamics ... 78
effect .. 79
eq .. 81
filter ... 82
io ... 84
noise .. 85
oscillator ... 87
shared_io .. 88
soundFile ... 89
synthesis ... 91
utility .. 93
wfs_experimental ... 94
wfs_io ... 94
wfs_panner .. 95

UnitRacks .. 96
wfs ... 96

 4

UMapDefs .. 97
automation .. 97
control .. 98
convert ... 99
filter ... 100
function .. 102
input ... 103
midi .. 105
modulation .. 108
operator .. 111
point_filter ... 112
point_to_value ... 112
point_utility ... 114
range .. 116
shared_io .. 117
trajectory .. 119
trigger_test ... 121
trigger_to_value ... 122
trigger_utility ... 123
utility .. 125

Appendix B: A walk through the helpfiles 127
Helpfiles .. 127

Appendix C: Working with the Game of Life system 131
Starting up the system ... 131
Working with the system .. 132
Putting files on the system .. 132
On your own computer .. 133
Shutting down the system ... 133

Working with WFSCollider : Starting up : Installing WFSCollider on your computer

 5

Starting up

Installing WFSCollider on your computer

To run WFSCollider you need a Mac with at least OSX 10.6 and an intel processor.
For running on linux and older versions of OSX you will need to install the libraries
separately on an existing SuperCollider install. Most probably it does not run on Windows
(it has never been tested, and saving files might be problematic).

Go to the website of The Game of Life: www.gameoflife.nl
In the menu, click on About > Working with our system.
Under Software downloads you will find the link (currently:
http://sourceforge.net/projects/wfscollider/files/).

Mac:

Download the latest version of WFSCollider v2 (as a packet: .dmg)
Double-click on the 'WFSCollider x.xxx.dmg' file.
In the window that opens, drag WFSCollider.app to the Applications folder (or any other
folder you like better).
Do the same with the Docs folder.

Note for OSX 10.8 and 10.9 users: when opening WFSCollider for the first time you
might get a warning about not being able to open the program because it is from an
unknown developer. This is the so-called Gatekeeper speaking. To be able to open
WFSCollider in this case you can open it by clicking on the app icon with the ctrl key
pressed (or with the second mouse button), and choose “open” from the contextual
menu that appears. This also results in a warning, but this time you can choose “ok” to
open the app anyway. It only needs to be done once; after that WFSCollider can just be
opened the normal way. Please also note on OSX 10.8/10.9 that the app should really be
in the Applications folder. If put elsewhere it might also trigger the Gate keeper into
quarantining the app, which effectively disables it forever on your machine (there are
ways to get it out of quarantine to be found via Google, but that is not trivial).

Linux and windows (and mac if you want to run WFSCollider within SuperCollider)

install SuperCollider: http://supercollider.sourceforge.net/
when SuperCollider is up and running, install the following Quarks (via: Quarks.gui):
- MathLib
- NetLib
- PopUpTreeMenu
- VectorSpace
- wslib
also install the sc3 plugins: http://sc3-plugins.sourceforge.net/
Download and install the latest version of the libraries:
- https://github.com/GameOfLife/Unit-Lib
- https://github.com/GameOfLife/WFSCollider-Class-Library
after installing, to run WFSCollider, run the following line in SuperCollider:

WFSLib.startup;

Working with WFSCollider : Starting up : Opening WFSCollider

 6

Opening WFSCollider

Double-click on WFSCollider.app.

In the post window you should see something like:

init_OSC
empty
compiling class library...
 NumPrimitives = 769
 compiling dir: '/Applications/WFSCollider-dev/WFSCollider.app/Contents/Resources/SCClassLibrary'
 pass 1 done
 numentries = 1652997 / 37770634 = 0.044
 9181 method selectors, 4114 classes
 method table size 32860936 bytes, big table size 302165072
 Number of Symbols 22087
 Byte Code Size 957915
 compiled 901 files in 0.68 seconds

Info: 8 methods are currently overwritten by extensions. To see which, execute:
MethodOverride.printAll

compile done
Help tree read from cache in 0.01410594 seconds
Class tree inited in 0.04 seconds
[nil, [58000], 8]
booting 57999
Found 0 LADSPA plugins
Number of Devices: 4
 0 : "Built-in Microph"
 1 : "Built-in Output"

"Built-in Microph" Input Device
 Streams: 1
 0 channels 2

"Built-in Output" Output Device
 Streams: 1
 0 channels 2

SC_AudioDriver: sample rate = 44100.000000, driver's block size = 512
SuperCollider 3 server ready.
Receiving notification messages from server wfs_master
Shared memory server interface initialized

Of course the output is also dependent on the audio interfaces you have connected to
your computer, and the setup in AudioMidiSetup.

To check your settings in 'Audio Midi Setup', open 'Audio Midi Setup' in the folder
/Apllications/Utilities/, and have a look in the Audio Devices window.

In WFSCollider you see a window called WFSServers. In the bottom left you should see a
green button and next to it the text wfs_master.

Working with WFSCollider : Starting up : Opening WFSCollider

 7

If so, you are now ready to work with the program.

Soundfiles can be of almost any format except for mp3 and FLAC. See here for a
complete list: http://www.mega-nerd.com/libsndfile/ . The sample rate of the system is
44.1KHz, so soundfiles that with that sample rate will sound the best (although it will
playback sound files of any sample rate correctly).

Working with WFSCollider : About WFSCollider : Copyrights

 8

About WFSCollider

WFSCollider is the driving software of the Wave Field Synthesis system of the Game Of
Life Foundation (http://www.gameoflife.nl). With WFSCollider it is possible to create
sound sources on the system, defining their location in the two dimensional field.
Sources can be moving in real-time along a trajectory or according to a function, sit
steady in the room or be manipulated live. The sound that plays on these sources can be
basic sound files, but WFSCollider also offers numerous possibilities for processing and
synthesizing sound. The sounds or sound processes can be placed on a timeline, and
everything can be saved into project files.

WFSCollider is based on SuperCollider, an open source music-oriented programming
language. While the WFSCollider interface is fully graphical, it is also fully scriptable via
SuperCollider code. There are many places in the program where you might find
SuperCollider functions. However, it is not required to know the SuperCollider language,
or even anything about programming in general, to be able to operate WFSCollider.

Apart from driving the Game Of Life system, WFSCollider can also be used to prepare
your projects at home, or even to compose for headphone, stereo or quadraphonic
setups using the same features and interface. This is what we call the “offline” mode, the
default mode in which WFSCollider will startup.

It is also possible to use this software to drive basically any WFS setup. It can be
configured for many situations, simply via the preference panel. WFSCollider can drive
both single array setups and full setups surrounding the audience. Also for this, no
SuperCollider coding skills are required.

The development team of WFSCollider is always open to suggestions. If you are a
programmer yourself, you are also welcome to send us pull requests for the libraries
involved. Bug reports can be made here:
https://github.com/GameOfLife/WFSCollider/issues

Copyrights
The software is distributed as open source, at no charge. This means you may use it and
adapt it to your liking, but not sell or resell it or parts of it yourself. The musical
compositions you create with the program do not fall under this license; for those normal
copyright laws apply.

Unit and WFS Libraries
WFSCollider is based on the Unit Library. This is a SuperCollider library that enables
timeline based editing and patching of processes (“Units”) in a graphical way. The library
was developed together with the WFS Library, especially for this project, but it is more
generic; it can also be used separately without the WFS capabilities. Also, there is the
VBAP library (currently part of the WFS Library), which is used to drive multi-speaker
setups via the VBAP technique. Just like the WFS Library, it uses the basic infra-
structure, framework and GUI interface of the Unit Library.

As a WFSCollider user it may be important to know about the distinction between these
two libraries, even when you are not programming source code. In the graphic interface
you will sometimes find names of objects that start with a capital ‘U’ (UChain,

Working with WFSCollider : About WFSCollider : Unit and WFS Libraries

 9

UGlobalEQ, Udef etc..). This means that these objects belong to the Unit Library. Also,
there are objects of which the name starts with ‘WFS’ (WFSServers, WFSPath etc..).
Those are specific to the WFS library.

The reason that we show these in the graphic interface is to maintain clarity about the
exact names used in the programming language, so that scripting for the system blends
in seamlessly with working in the GUI (graphical interface). This also goes for counting
values; SuperCollider (as many programming languages) always starts counting at 0
(zero), not 1. Therefore most of the settings and values that are in whole numbers in the
interface also start at zero (for example the number of an event in the score editor, or
the index of a specific loudspeaker on the WFS system), even though most humans start
counting at 1...

Working with WFSCollider : Basic elements : Score (UScore)

 10

Basic elements

In WFSCollider we define a number of basic objects and concepts.

Score (UScore)
A Score holds a timeline, along which Events can be placed. Playing a Score will start
and stop these events at the right moment. The Score can be saved and read as a file
(.uscore extension). The system can open and play multiple scores at the same time,
and there are also ways to manipulate the timeline while playing. Scores have an
analogy to what is sometimes called “arrangement” in other DAW software.

Note that Score pause in WFSCollider means something else than in most DAW software.
When setting a Score to pause, only the timeline is paused. Any events that were
already playing will keep playing. If you really want to stop all sound, use the stop
button instead.

Event (UEvent)
Events are objects to be activated by a score. They can also be activated individually
(via supercollider code, via OSC messages or via the ‘power’ button in the editor). There
are currently three types of events: Chains (UChain), Markers (UMarker) and ...
Scores (UScore). Yes, the Score itself is also an Event, and it can be placed on the
timeline of another score. In that case, we call it a Folder. Events have distinct colors in
the editor, which are assigned automatically but can also be changed by the user.

Chain (UChain)
A Chain holds a series of Units (U). Together they form one processing chain, where
usually a sound is generated, processed and sent to the outputs of the system. Via the
editor the user can design the signal path and contents of the Chain. A Chain is a self-
enclosed environment. Sounds and processes in a Chain cannot interfere with sounds in
another Chain; multiple Chains operate in parallel to each other. If you want sound
processes to interfere with each other, it all needs to happen within one Chain (more
about this in the “Parallel architecture” topic below).

The duration of a Chain can be either a fixed time or ‘infinite’ (inf). Where a fixed
duration Chain will automatically stop playing after it’s duration has elapsed, an infinite
duration will cause the Chain to keep playing indefinitely, until it is stopped by the user.
If a Score includes an infinite duration chain, the duration of the score will also become
infinite. Infinite chains are typically useful for live performances. Please keep in mind
though that even if the duration of a Chain is set to infinite, that doesn’t mean all the
units in the chain produce sound infinitely. For example if there is a soundfile involved it
might need to be set to ‘loop’, so that it will also play indefinitely.

Chains also have a ‘releaseSelf’ setting which defines their behavior inside a Score. If
‘releaseSelf’ is enabled (default) the Chain will take care of its own ending. If the Score
is paused after the Chain was started, the Chain will keep playing and end itself after it’s
duration has passed. This is analogous to the “one shot” setting on some commercial
sampler plugins and machines. If ‘releaseSelf’ is disabled however, the Score becomes in
charge of when the sound ends. If the Score is paused while the Chain is playing, the
Chain will keep on playing until the Score is unpaused again and passed its original end
time.

Working with WFSCollider : Basic elements : Unit (U)

 11

Unit (U)
A Unit is a single processing entity. Units can only function as part of a Chain. The
concept of a Unit could be compared to that of a plugin in commercial DAW’s, both
instrument and effect. But also the output stage is a Unit WFSCollider. For example,
there can be a Unit that plays a soundfile, in a Chain together with a Unit that makes a
WFS source. The signal will be routed from the soundfile Unit to the WFS Unit inside the
Chain. If there would be no WFS Unit (or any other Unit that outputs sound), there will
be no sound; the sound is generated but doesn’t reach the outputs. Vice versa if there
would be only a WFS Unit but no soundfile or other type of sound generating Unit in the
Chain, there is also no sound. Then the WFS Unit will only output silence.

The Unit is the spine of the Unit Library (which makes it’s name not an entire
coincidence). They enable users to have full control over the signal flow in a modular
way, and keep track of what is going on in both an intuitive graphical representation and
a just as intuitive coding environment (this document will focus mainly on the graphical
environment).

Udef (Udef)
Udefs hold definitions of what a Unit can (and will) do. Each Unit is based on one of the
available Udefs. The Udef can be regarded as the “blue-print” of a Unit. There are Udefs
for generating sound, for processing sound and for outputting sound. And there are
special Udefs that create the more complex WFS panning engines. Udefs are stored as
SuperCollider code files. The default set of Udefs that comes with WFSCollider is inside

audio bus
chain

0 1 2 etc..

unit

unit

unit
output
to speakers

input
generator

processor

WFS renderer
(“panner”)

()

Working with WFSCollider : Basic elements : UMap / UMapDef

 12

folders named “UnitDefs”, inside the Unit Library and WFS Library folders (located in the
Resources folder inside the applications bundle). The currently loaded Udefs can be
viewed in the Udefs window (menu View->Udefs), from where there are links to the code
files. Udefs are recognized by their (exact) name. Loading a new Udef will replace any
already existing Udef by the same name. More Udefs can be added by coding them and
putting them in those folders, or they can be placed in the same folder as a .uscore file
that uses it.

Normally, the default set of Udefs is enough to do many different things in WFSCollider.
More specific info about all available Udefs can be found in the Interface (or GUI)
section: Udefs Window. To change the Udef of a Unit, or add a new Unit based on a
certain Udef, the Udefs can be dragged and dropped from the Udef window into the
UChain editor window. Udefs are organized along a number of categories, such as
‘synthesis’, ‘soundFile’, ‘effect’. The WFS specific Udefs are in categories that have ‘wfs_’
in the name (‘wfs_panner’, ‘wfs_io’). Also usually their individual names are preceded by
‘wfs’ (i.e. ‘wfsStaticPoint’).

UMap / UMapDef
UMaps are a special type of Units. They can be used to automate and modulate
parameters (“args”) of a Unit, map them to MIDI/OSC controllers or apply other
functions to them. Units can receive UMaps for almost any parameter. The system
automatically recognizes which UMap can be assigned to which parameter, and the
output of the UMaps is automatically mapped to the value range of the parameter it is
connected to. The parameters of the UMaps can themselves again be mapped to another
UMap, creating endless modulation and control possibilities. UMaps have their own
definition system, analogous to the Udef system for normal Units. Common examples of
UMaps are LFO’s, envelope generators, MIDI controllers and randomizers. There are
special UMapDefs for Point and range type parameters, including a trajectory generator.

unit

umap

arg

...

...

arg

arg

arg

arg

(chain)

value

value

value

umap
arg

arg etc..
(generator,
processor,

panner etc.)
umaps:

control generators, functions,
external controllers (MIDI/OSC)

Working with WFSCollider : Basic elements : Marker (UMarker)

 13

Marker (UMarker)
Markers are a different type of Events that can be placed on a Score’s timeline. Markers
don’t play sound, but they can perform tasks such as pausing the timeline, jumping
forward or backward or even basic automation. Markers can also hold text for example
for comments on things in the score. Each marker can have a name to be displayed in
the score editor (names don’t need to be unique), and with the score editor back/next
buttons the user can jump between the positions of markers in the score. Basically
markers fire a SuperCollider function when they are played. There is a number of presets
available with various useful functions ready for use, but they can also be edited directly
from the graphic interface. A Marker event doesn’t have a duration, only a start time
(i.e. the duration is always 0).

EQ (UGlobalEQ)
There is a global equalizer available that works on all sound outputs. It can be edited in
the EQ window (menu View->EQ). It has a low shelf and high shelf filter, and 3 peak
bands. It also includes a gain parameter. This EQ also holds the system’s built-in limiter
and DC offset removal. These cannot be edited; they are there to protect the system’s
speakers. The limiter is designed as a soft clipper, which will kick in when the level is
more than 12dB above 0. This will cause audible distortion. The limiter is set up behind
the EQ, which is why there is a gain parameter in the EQ.

Level (UGlobalGain)
The large level slider at the right side of the screen is the global level. It is applied to all
outputs of the system. The nominal level is 0dB.

Bar/beat vs. time (TempoMap/BarMap)
The Unit Library features a tempo and signature mapping system. The user can decide if
the timing in the Score should be based on seconds, or on beats/bars in a certain tempo.
There can be tempo changes and signature changes as well, which are stored in the
TempoMap object and saved automatically with the score.

Folders / nested Scores
On a Score’s timeline there can be UChains and UMarkers, but there can also be whole
Scores. This is what we call “folders”, or nested Scores. They can be created from
selected events with the ‘folder’ button, and unpacked with the same button. Double-
clicking the event will open up the folder and give access to its contents. Folders are a
way of grouping events; moving a folder across the timeline will move all events in it.
The folder objects function as completely separate scores, which can also be
started/stopped individually. Using the [^] button will open the folder score into a new
window, giving the possibility to save it as a separate score. Please note that folders
have their own timeline and tempo map, independent of that of their parent score.

Presets (PresetManager)
WFSCollider features a global preset system, which is used in various places. There are
PresetManagers for EQ, UChains, UMarkers, WFS Speaker configurations and WFS
options. It works the same everywhere; a preset can be chosen from a flip menu at the
bottom of the page. This changes the settings for the objects to the stored preset. In
case of UChains, it will replace the Units in the Chain with those from the preset. The
arrow buttons at the left side of the menu let the user jump back and forth between the

Working with WFSCollider : Basic elements : Point (Point)

 14

preset and the last state of the object before the preset was applied. The + / - buttons
at the right side can remove or add presets to the list, based on the current state of the
object. If you add a preset and give it the same name as one of the presets that is
already in there, it will be replaced. The [read] and [write] buttons allow the user to
save the current bank of presets to a file, or read them back from an earlier saved file.
By default the PresetBank will show a predefined set of presets, mostly showing
examples of what can be done, or forming starting points for new objects.

Point (Point)
Point objects are used in WFSCollider to define the position of a source. They represent
the location of a point source, but also the location and direction of a plane wave. The
system’s two-dimensional space is represented in the following way:
- x axis (in meters) from left to right; negative to positive
- y axis (in meters) from back to front; negative to positive
- point (0,0) is the center of the room
- with normal polar conversion, a radian angle of 0pi means straight right, and from

there angles move counter-clockwise
- in the graphic interface we also use “deg_cw” as units for angle; they are defined as

0 to 360 degrees clockwise, where 0 means straight front.

For plane waves, the defined point means the point on the plane that is nearest to the
center of the room.

+ x- x

- y

+ y

front

Point Polar (radians) Polar (Degrees CW)

back -0.5pi

0.5pi

0pi

180°

0°

90°270°

Working with WFSCollider : Basic elements : Static and dynamic sources

 15

Static and dynamic sources
WFSCollider makes a distinction between static and dynamic WFS sources. Static sources
are not allowed to move in real-time. This limitation gives way to great optimization, so
that the system is able to handle many more static sources simultaneously then it could
with dynamic ones. But, be sure to know, changing the position of a static source while
playing it will not cause it to change audibly; the event needs to be stopped and started
again to hear the effect. Dynamic sources, on the other hand, can move. They use real-
time optimization, which makes them quite efficient, but only about half as efficient as
static sources.

The ‘wfsSource’ Unit is used for both dynamic and static sources. By default the unit is
static. The unit becomes dynamic when a UMap is applied to the ‘point’ parameter. This
UMap can be anything from the ‘point’ and ‘trajectory’ categories, or an ‘expand’ (which
provides the ability to connect individual UMaps to the x and y positions of the point). As
soon as the UMap is removed, the unit becomes static again. The pictures below show a
static source, and a dynamic source with a ‘lag_point’ UMap attached. The ‘lag_point’ is
typically used for situations where the point is controlled live, by hand or controllers, and
smoothens sudden changes in position to prevent Doppler shift artifacts and clicks.

The dynamic source offers two quality modes: ‘good’ (default) and ‘better’. The ‘good’
mode uses linear interpolation for the delays involved in the WFS algorithm. They sound
ok in most cases but can cause some artifacts. In ‘better’ mode the interpolation is done
via cubic splines (Hermite), which results in a better sound quality and more precise
positioning. The ‘better’ mode requires apx. 1,5 times more CPU power from the system
when compared to the ‘good’ mode.

point

pla
ne

 w
av

e

dir
ec

tio
n

-y

+y

-y +y

Working with WFSCollider : Basic elements : Amplitude model

 16

Amplitude model
In WFSCollider we use a unified amplitude model, that is a little different from that of
most other WFS rendering software. The overall amplitude (level, volume) of a source is
calculated from the distance of the source to the center of the room. In the center of the
room there is an area which we call the ‘maxAmpRadius’, where the level is always at it’s
maximum (relative to the gain of the source and the global level). When outside this
area, the level drops with a user definable amount of dB’s per distance doubling. In the
default settings, the maxAmpRadius is 5m, and the dB roll-off is -6dB per distance
doubling (which is the expected roll-off in an anechoic environment). In many cases
however, a roll-off setting of -3dB per dd. will sound more natural to our ears. For plane
wave sources, the default roll-off is 0dB (because ideal plane waves don’t lose energy
over distance).

Distance filter
WFSCollider features a filter for emulating distance in the point source rendering. This
filter is designed according to a formula by Richard W. Furse
(http://www.muse.demon.co.uk/vspace/model.html). It implements a 1-pole low pass
filter with a cutoff frequency that is related to the distance of the source from the center
of the room. The formula is as follows:

cutoff = 100000 / distance

Working with WFSCollider : Basic elements : Latency compensation / Doppler reduction

 17

This filter is implemented as a separate Udef that can be inserted in the chain, but it is
also included in the wfsSource panner. There it can be enabled via the ‘distanceFilter’
slider. The amount of the slider is a cubed multiplier for the used distance; when the
slider is set to ‘0’ the filter will never be audible, when the value is 1 the response will be
that of the normal function as defined by Furse, and when the value is higher the effect
will be exaggerated. When the value is 2 that means that the reference distance for the
filter is multiplied by 8 (2 cubed; 2 to the power of 3).

Latency compensation / Doppler reduction
When calculating wavefronts in WFS we introduce a delay in the sound. This is caused by
the distance of the source to the listener and the speakers, and would be there in the
physical world as well. This means that if two sources are timed together, but in different
places in the room, they will not be in sync. It also means that if a source is moving, the
delay is modulated, creating an audible shift in frequency (known as the Doppler shift).
Now, it is possible to (partly) reduce these effects, in case are not musically desired. This
function is named ‘latencyComp’, and is featured on all the wfs_panner Udefs. The
latencyComp effectively reduces the larger part of the induced delay. When fully
effective there is only the delay differences between the speakers left, and not the delay
caused by the distance of the source from the center of the room. This eliminates a large
part of the Doppler effect, and makes sure that sources can be in sync with each other
regardless of their placement in the room. The latencyComp function can be controlled
via a slider, which ranges from 0 (no compensation) to 1 (maximum compensation).
Latency compensation also works on static sources, where it influences the timing of the
event. Note that this value is only used at the start of an event; changing it during
playback will not give audible results until the source is started again. Also note that
some Doppler shifting can always be heard, caused by the delay differences between the
individual speakers.

-30dB

-24dB

-18dB

-12dB

-6dB

0dB 0m

20m

40m

60m
80m

200m

100Hz20Hz 22.05KHz1KHz 10KHz

Distance filter
re

du
ct

io
n

frequency

distance from
 center

Working with WFSCollider : Basic elements : Path /Trajectory (WFSPath)

 18

Path /Trajectory (WFSPath)
In WFSCollider it is also possible to make sources move along a certain spatial
trajectory. These are called WFSPaths. They consist of a collection of Points, with
transition times in between. WFSPaths also hold information about the way the values in
between the points are calculated. WFSPaths can be played by ‘trajectory’ UMaps, which
can be assigned to a ‘wfsSource’ unit’s ‘point’ parameter.

The duration of a Path is not coupled to the duration of an Event. Paths can also be
looped, started with an offset and played at different speeds. There are two ways to
store WFSPaths:
- in the Score
- as separate “raw data” files (.wfspath extension)
To save a WFSPath as raw data you need to click the “write data” button in the Chain
editor, and specify a location on your hard drive where the file should be saved. If you
save it in the same folder as your Score file, it will be located automatically next time
you open the score, even if the whole folder is moved to another place or machine. If
you don’t do “write data”, then the WFSPath will be saved inside the score file itself.
Note that Paths with raw data files play back more reliably than the ones saved in the
Score, because those have to be sent completely via network every time they are played
back. This makes them vulnerable to network latency due to high traffic load, and also
increases network latency for other Events played at the same time. In general it is
recommended to use the “write data” function.

WFSPaths can be edited and designed via the WFS Path Editor. This editor is called up
via the [edit] button in the trajectory UMap GUI in the Chain editor.

Working with WFSCollider : Basic elements : WFS Position Tracker (WFSPositionTracker)

 19

WFS Position Tracker (WFSPositionTracker)
The WFS Position Tracker can be found in the menu Views -> WFS Position Tracker. This
is a global monitoring system for all active WFS sources. Each source will be shown as a
point or plane in the window, and will have the same color as the event to which it
belongs. The information comes from the actual rendering servers. It is not possible to
edit positions from this window, only to watch them. After the position tracker is enabled
(via the ‘power’ button in the upper left corner) each new started event will be
registered to the tracker. Any events that were already playing will not be tracked. The
‘rate’ slider sets the frame rate of the tracking for dynamic sources. Note that higher
frame rates will result in more network traffic and CPU use.

WFS Speaker Configuration (WFSSpeakerConf)
The WFSSpeakerConf holds the current setup of the speakers of the system. To be able
to perform proper WFS rendering, WFSCollider needs to know the exact positions of all
the loudspeakers. These are defined in the WFSSpeakerConf. This can be edited in the
menu WFSCollider –> preferences... (or View -> WFS Preferences... on Linux/Qt), [edit
speaker configuration] button. The default speaker configuration is that of the Game Of
Life system in its widest setup: a 10m x 10m square with 192 loudspeakers (4 x 48).
The speaker configuration is displayed in all WFS point, plane and path editors, as a
reference for the dimensions of the system. It is also shown when running in offline
mode.

WFS Speaker Configurations always consist of one or more arrays of loudspeakers
(shown as red/brown lines in the edit windows). Each array is pointing to the center of
the room. Systems can consist either of a single array, or a set of arrays which together
form a closed shape (rectangle, square, hexagon etc..). The configuration doesn’t need
to be symmetric. In general, using less and larger arrays is better. Also there cannot be
two arrays with the same angle next to each other, or in front of each other.

Working with WFSCollider : Basic elements : WFS Preview Mode (WFSLib.previewMode)

 20

If a WFS Speaker Configuration consists of a single array, there are some settings
elsewhere to be taken care of. These are ‘useFocusFades’ and ‘tapering’, both found in
the main preferences window. Any change to these settings will require a rebuild of the
system’s SynthDefs, which can be done via the button right below the settings (the
rebuild will take about 30 seconds). The useFocusFades setting needs to be off for single
array systems to be able to use the whole field in front of the loudspeakers. The tapering
setting is advised to be 0.1 (10%) for single array systems, and 0 (zero) for any other
configuration.

WFS Preview Mode (WFSLib.previewMode)
WFSCollider offers the possibility to work on WFS material at home (i.e. with no actual
WFS system present). This works via the previewMode. By default, if no changes to the
settings are made, WFSCollider will start up with previewMode set to ‘headphone’. This
means that all WFS sources will be made audible using a headphone emulation of the
effect. The doppler shift and level differences are the same as in a real WFS system. The
previewMode can be set via the preferences panel (menu ‘WFSCollider –> preferences...’
or ‘View -> WFS Preferences...’ on Linux/Qt). There the previewMode can be selected via
a popup menu. You need to press the [apply] button to make the change effective, and
if you want to save your change, press the [save] button.

There are a number of previewModes available:
- ‘headphone’: a simple headphone emulation, using inter-aural time differences. Note

that this preview is not “binaural”, meaning that it doesn’t make a difference
between sounds coming from the back and sounds coming from the front.

- ‘stereo’: an emulation optimized for stereo loudspeaker setups.
- ‘quad’: an emulation for classic “quadraphonic” speaker setups.
- ‘hexa’: an emulation for circular 6-speaker setups
- ‘octo’: an emulation for circular 8-speaker setups

Working with WFSCollider : Basic elements : Server(s)

 21

If you set the previewMode to ‘off’, that means that WFSCollider will not be in
previewMode, but generate actual WFS rendering, based on the current WFS Speaker
Configuration.

Server(s)
The Server-Client model used in WFSCollider is part of how SuperCollider (the language
in which WFSCollider was written) works. A Server is a computer program named
‘scsynth’, which runs in the background. The Servers do the actual audio rendering.
WFSCollider communicates with servers via network messages (which can also take
place within a single computer) via the OSC format. In WFSCollider there can be multiple
Servers active at the same time. In normal installations outside WFS systems we usually
only use a single server called “wfs_master” (also referred to as the “master server”).
This server needs to be running to be able to hear sound from WFSCollider.

Normally the server starts up automatically when you start up WFSCollider, and quits
again automatically when you exit the program. In some cases this can go wrong (for
example if WFSCollider crashes) and the server program may keep running. Also it may
happen that WFSCollider looses its connection to the server (for example when an audio
interface is unplugged during operation), and is unable to start a new server. In such
occasions, where the server won’t start, you can use the [K] button in the WFSServers
window. This ends all scsynth processes on your machine, making way for new ones.
After pressing the [K] button, you can start up the server again with the power button
next to the “wfs_master” label. If the power button and the “wfs_master” label are both
green, that means the Server is running.

On WFS systems, WFSCollider usually uses multiple Servers. These don’t necessarily
need to be on the same machine. For example on the Game of Life system, there are 17
server applications in use; one master server (on the system’s control laptop) and 8
Server on each of the WFS rendering computers (which confusingly are also called
Servers). These can all be monitored from the WFSServers window. The reason for
having 8 Server processes per machine is that these machines have 8-core CPU’s. Each
Server process can only use one core at a time, so with 8 cores we make full use of the
machine’s capabilities. WFSCollider intelligently divides the load among these Servers to
ensure optimum performance.

On the Game of Life system the master server is used as a master for synchronization.
But it is at the same time a fully functional audio engine, which can also generate sound,
and is connected to its own audio interface. There are certain Udefs available which force
your UChain to play on the master server instead of the WFS rendering servers.
Examples of this are ‘wfsMasterIn’ and ‘wfsMasterOut’, which can be used to route live
inputs to the system’s rendering machines, or to play sound on the analog outputs of the
master audio interface in sync with the rest of the system.

Parallel architecture
The main reason for the UChain/Unit design choice is the fact that we use parallel
processing on the WFS rendering machines. A Chain with all its enclosed Units forms one
series of interconnected objects. It cannot interfere with signal paths or sounds in
another Chain, because all chains run in parallel to each other (i.e. you cannot be sure
that another Chain is runned on the same processor core, or even on the same
machine). This means that if you want sounds to be able to interfere with each other,
they need to be in the same Chain. The benefit of this parallel design is that we can get

Working with WFSCollider : Basic elements : Synchronization

 22

much more processing power from modern multi-core machines. The Game Of Life
system currently uses 8-core processors, and the parallel design of WFSCollider makes
use of these as if they were 8 different machines.

When running WFSCollider in offline mode, it only uses one core of your machine. This is
ok because the ‘headphone’ previewMode takes far less processing power compared to
the actual WFS calculations. The limitations of the parallel design remain, mimicking the
behavior of the real system.

Synchronization
One of the challenges of designing and building a WFS system is in the synchronization
between machines. To ensure correct wave field rendering all machines need to run in
sample-tight sync. WFSCollider uses a dedicated system for this. It involves a patched
version of the SuperCollider source (i.e. it will not work with normal SuperCollider
installs), which is enabled to measure differences between sample clocks of machines,
and use those to schedule events at exactly the same moment on multiple machines.
This synchronization system is currently only used for the Game of Life system. When
using WFSCollider in offline mode at home it is not needed, since only one machine is
involved there. On the Game of Life system the synchronization can be done via the
“sync” button in the WFSServers window. It needs to be done only once, at the start of
the session. The numbers that appear in the boxes next to the Server labels are the
measured sample differences between the machines and the master server (which is the
sync reference). If these numbers are unstable (i.e. if they change after pressing “sync”
for the second time) that means there is a problem with the wiring of the system. It is
generally advised to press the sync button every now and then to check if it is still in
sync, and also to ensure the best possible latency. Please check Appendix B: Working
with the Game of Life system to read further about this.

The “sync” button is also available in the offline mode. There it can be used to emulate
the sample-synchronous timing that is used on the large systems. After pressing “sync”
once, the red indicator becomes green and we are in sample-sync mode. Please note
that event start times will be rounded to the program’s buffer size; 128 samples.

Latency
The latency slider in the upper right corner is also about synchronization. The system is
operated via network messages. There is certain unpredictability in how long these
messages take to arrive at their destination. If a message arrives after the time an event
was scheduled to play, the event will start too late, and not in sync with the rest of the
system. For this reason we need to give the messages some time to arrive, which we call
the latency.

The default latency is set to 0.2 seconds. This is usually more than enough time for
everything to arrive. However, for more complex scores where many events are started
at the same moment, the network traffic increases and the 0.2 seconds may prove to be
too short. In such occasions you can simply increase the latency time. That will also
mean that the system will respond slower to changes. The time between hitting play and
hearing the first sound is roughly the same as the latency. In the score editor, during
playback, a second playback position line shows the playback time corrected by latency.
The gray area in between the two playback lines means that events in that area are
already started, but not yet sounding.

Working with WFSCollider : Basic elements : Latency

 23

In some situations it could also be desirable to lower the latency. When playing only one
or two events at the same time, the latency could be set as low as apx. 0.05 seconds.
This means that the system will respond almost instantly to any change, which is
obviously most useful in live situations.

Note that some parameters (such as the ‘amp’ in most Udefs) don’t use latency. They
will always be changed as fast as possible. This is only used on parameters that don’t
need to be changed in perfect sync.

Also note that the latency setting is not about live sound input. Live sound input is
discussed in the “More about Units and UChains” section of this manual, and its latency
depends on (usually fixed) system and soundcard settings.

Working with WFSCollider : The Menus : Score

 24

The Menus

Note that the terms Chain and UChain, Score and UScore, Def and Udef, etc. have a one
on one relation, but in the interface they are both used. The names with the U's in front
are the names of the actual classes, the names without a U, are the names of the
interface elements. And some interface elements are named after their classes.

Score

New
Create a new Score. You can create as many Scores as you want. The Score is like a
Timeline in a Sequencer or DAW.

Open...
Load a Score from a disk.WFSCollider can only open uscore files via this menu item (i.e.
not directly from the Finder or with File->open)

Save
If this is the first time you save this Score, a Save window will open, otherwise the Score
will be saved.

If the Score is saved, an extension, .uscore, will be added to the name of the file. These
are text files that hold the generated code to re-create the score. They can be edited in
a normal text editor as well (not in WFSCollider).

To be able to use your scores on the Game Of Life system, you need to make sure that
the soundfiles you use are in the same folder as the .uscore file. WFSCollider will then
write relative file references in the saved uscore file, so that the whole folder can be
moved anywhere.

Save as...
Save the Score under a different name.

Export as audio file...
Export the Score as an .aiff file, depending on previewMode the settings in the
Preferences menu.

Add Event (Sh-Opt-Cmd-A)
Adds a new Event to the Score.

Add Marker
Adds a new Marker Event to the Score. Markers are special events that can contain text
notes about the score, and perform simple functions such as pausing the score at a
certain moment, or jumping to a different position.

Edit (Opt-Cmd-I)
Edit one or more selected Events.

Delete (Opt-Cmd-R)
Delete one or more selected Events.

Working with WFSCollider : The Menus : Session

 25

Copy (Sh-Opt-Cmd-C)
Copies one or more selected Events.

Paste (Sh-Opt-Cmd-P)
Pastes one or more selected Events at the position of the Timeline in the score that is
currently in front.

Select All (Opt-Cmd-A)
Select all Events.

Select Similar
Selects Events that have the same Udefs in the same order in their Chains. Or that are
otherwise of the same type.

Sort Events
Sort the Events in the current Score by their start time. This means the indices of the
events (numbers shown in each event of the Score Editor) will be re-assigned according
to the order of events on the time line.

Overlapping events to new tracks
Overlapping Events are moved to an empty track.

Remove empty tracks
Removes empty tracks between the Events

Disable selected (Opt-Cmd-M)
The selected Event will be disabled. Disabling is different from muting. Disabling an
event will make the score player ignore it, i.e. not play the event at all. It will not
immediately stop playing if it already is, and will also not immediately start playing if it is
enabled during playback. This is different from the “mute” function, which can be found
in the Mixer and in the UChain editors.

Enable selected (Opt-Cmd-U)
The selected Event will be enabled.

Enable all
All Events will be enabled.

Enable selected and disable all others (Opt-Cmd-P)
Only the selected Events will be enabled.

Add Track
Add an empty Track to the Score. Tracks are used only for visual purposes.

Remove Unused Tracks
Removes added Tracks that are empty. There is always a minimum of 12 Tracks.

Session

(The Session window is partly functional, but it is still under construction. There are
some bugs as well).

Working with WFSCollider : The Menus : Session

 26

New (Opt-Cmd-N)
Create a new Session. You can create as many Sessions as you want. The Sessionis like
a kind of Playlist.

Open...
Load a Session from a disk.

Save (Opt-Cmd-S)
If this is the first time you save this Session, a Save window will open, otherwise the
Session will be saved.

If the Session is saved, an extension, .usession, will be added to the name of the file. It
holds all information present in the session, including the scores.

Save as... (Sh-Opt-Cmd-S)
Save the Session under a different name.

Add > New > UChain
Add a new Chain to the Session.

Add > New > UChain Group
Add a new Chain Group to the Session.

Add > New > UScore
Add a new Score to the Session.
(Bug: you cannot delete the UScore with the Delete button)

Add > New > UScoreList
Add a new Score List to the Session.
(Bug: does not add anything)

Add > Current score
Add the Score that is the topmost Score of all Score windows to the Session.
(Bug: do not use the shortcut, it will add an Event to the Score).

Add > Current score duplicated
Add a copy of the Score that is the topmost Score of all Score windows to the Session.

Add > Selected events
Add one or more Events that are selected in the topmost Score of all Score windows to
the Session. If you select an Event, a UChain will be added. If you select a Folder, a
UScore will be added.

Add > Selected events flattened
Add one or more Events that are selected in the topmost Score of all Score windows to
the Session. When you select a Folder, the Folder will be added as separate UChains.

Add > Selected events into a UChainGroup

View

EQ
Opens the Master EQ, or brings it’s window to front.

Working with WFSCollider : The Menus : Window

 27

Level
Opens the Master Volume, or brings it’s window to front.

UDefs
Opens the Udef window, or brings it’s window to front.

Meter
Opens the Level Meters, if not already open. The number of meters is dependent on the
confituration in 'Audio Midi Setup'. On the Game Of Life system this only meters the
master server, not the actual system servers.

WFS Position Tracker
Opens the WFSPositionTracker window. This allows you to view the current position of
active events on the system. To use the tracker: click the ‘power’ button in the left top
corner. From now on every new event will be tracked. The speed of the tracking (polls
per second) can be changed with the slider. Faster speeds result in more fluent
animation, but cost more CPU and network traffic.

Window

In the Window menu at the bottom you can select a window so it comes to the front.

Help

Here you can find a few help files. Look under getting started with WFSCollider: here you
will find the WFSCollider V2.0 Overview. In general, these help files focus more on the
scripting and coding aspects of WFSCollider and the Unit Library. In Appendix B of this
manual you can find a full walkthrough of the help system, guided by Arthur Sauer.

Working with WFSCollider : Interface (or GUI) : Server window

 28

Interface (or GUI)

Server window

K

Kills all Servers.

sync

Pressing the ‘sync’ button enables the sample-sync operating mode of WFSCollider.
This is required for running on the Game Of Life system, but not for running in
offline version. In offline mode it can be used to test the timing of the score.

Latency

Sets the latency of all servers. This represents the time it will take for an action to
take effect. Lower latency will result in faster response, but might also cause
asynchronicity. The default latency of 0.2s is good for most applications. For live
use one might want to decrease this value, and very complex pieces might
require a higher latency instead.

power button

Start up the Server.

Post window

This is where all messages of SuperCollider and WFSCollider are posted.
To go to the Post window: click on it, select menu Window > Post window To Front, or
Cmd-\.
To clear the Post window: select menu Window > Clear Post Window (Sh-Cmd-C).

Working with WFSCollider : Interface (or GUI) : Score window

 29

Score window

interface elements on the top of the window

i

Select an Event and click on the i-button to open the Chain window, where all
parameters of the selected event can be edited. If no or multiple events are
selected it will open the Mass Edit window, where the parameters of all events can
be edited at once.

-

Deletes selected event and delete it.

+

If no Event is selected, a new, default Event will be added. If one or more Events are
selected, they will be duplicated.

‘flag’

Adds a Marker Event (UMarker) to the score.

[

If no Event is selected, all Events are trimmed on the left side at the current play
position. If one or more Events are selected, only the selected Events will be
trimmed.

|

If no Event is selected, all Events are split at the current play position. If one or more
Events are selected, only the selected Events will be split.

Working with WFSCollider : Interface (or GUI) : Score window

 30

]
If no Event is selected, all Events are trimmed on the right side at the current play

position. If one or more Events are selected, only the selected Events will be
trimmed.

<-

Undo the last edit.

->

Redo the last edit.

(-) (small minus button)
Clear undo history and disable/enable undo. Use this if your computer becomes slow

after many edits

loudspeaker

All disabled selected Events are enabled and all enabled selected Events are disabled.
Disabled events will be ignored during score playback.

lock
Locks or unlocks the startTimes of the selected events. Events can not be moved

horizontally if their startTime is locked.

folder

Select one or more files to put them into a nested score, a.k.a. folder. To go into the
folder, double-click the folder on the track. Once you are in the folder, you see the
name of the folder in the toolbar, and next to it an arrow that points up. You can
nest folders within folders.

unfold
Unfolds any selected folders.

after opening a folder via double click, two more gui elements will appear:

name of the folder
Click on the name of the folder to go back one level in the folder hierarchy.

up-pointing-arrow

When you are in a folder, you see an up-pointing-arrow in the toolbar. If you click
on it, a new score with the contents of the folder will open.

mixer

Opens the Mixer window, where the levels and mute settings of all events in the
score can be viewed and changed.

snap

When moving an Event, it will move in steps of the size of the setting in de snap pop-
up menu. The available settings are: off, cf, 0.001, 0.01, 0.1, 1/32, 1/16, 1/12,
1/8, 1/6, 1/5, 1/4, 1/3, 1/2, and 1. ‘cf’ means the sample block size / control
frame (128 samples) of WFSCollider, which is the actual timing resolution. When
the score editor is in ‘bar’ mode, these values will correspond to fractions of a

Working with WFSCollider : Interface (or GUI) : Score window

 31

beat. When in ‘time’ mode, they are fractions of seconds. Note that the times
times of the events will not be rounded off to the snap value, but rather be
incremented or decremented by the snap amount. When moving events using the
arrow keys, the snap value is used as step size.

Q
Quantizes the startTimes of the selected events to the snap value. If no events are

selected, the position line will be quantized instead.

Mode:

all
You can move, resize and add fades to Events.

move

You can only move Events, you cannot resize, or add fades to Events.

resize
You can only resize Events, you cannot move, or add fades to Events.
If you double-click on the Event, the Chain window will not open.

fades

You can only add fades to Events, you cannot move, or resize Events.
If you double-click on the Event, the Chain window will not open.

interface elements on the bottom of the window

play

Start or stop playback of the Score.

pause

Pause the playback of the Score. Soundfiles that were already playing are not
stopped. Clicking on the pause button again will not play soundfiles that were
already playing when pause was clicked the first time. Clicking on play twice will
resume the Score where it was stopped.

back (|<)

Clicking this button will return the current play position to the start of the Score, or,
if there are Markers in the score, to the previous marker position. If the score was
playing when you hit this button, it will contiue playing from the new position.

next (>|)

Clicking this button will set the current play position to the next marker, or else to
the end of the score. Like the back button, the score will continue playing.

loop

The loop point is the end of the last Event in the Score. The start point of the loop is
the beginning of the Score.

Do not make the event to short, or the score will not loop. See the post window
(Cmd-\):
WARNING:
Score is too small, will not loop score. Would not have enough time to
prepare events.

Working with WFSCollider : Interface (or GUI) : Score window

 32

SMPTE timecode
Shows the current play position. By clicking on it and moving with the left or right

cursor keys on your keyboard, you can enter numbers and with the Enter or
Return key you can set the current play position to this value.

time / bar

This flip menu decides if the score’s timeline is displayed in seconds or tempo and
signature aware bars and beats. When in ‘time’ mode, the SMPTE timecode
display shows the position. When in ‘bar’ mode, a different set of controls
appears:

bar-map display

Shows the current play position in bars/beats/divisions (1/1000). Each of the
boxes can be edited separately, and the left/right arrow keys allow jumping
between them.

signature display

Shows the current signature. The default signature is 4/4 for the whole score.
There can be signature changes. This box shows and edits the signature at the
current score position. It can be edited by mouse dragging (alt or control drag for
denominator change), arrow keys and by entering new signatures via keyboard.

tempo display

Shows the current tempo in BPM. The default tempo is 60 for the whole score,
where 1 beat == 1 second. There can be tempo changes. This box shows and
edits the tempo at the current score position. It can be edited by mouse dragging,
arrow keys or entering new values via keyboard. The ‘lock’ icon in the upper right
corner enables the tempo-lock mode. In this mode the startTimes of all events in
the score (except the ones that are ‘locked’) will be altered according to changes
made in the tempo.

edit
Opens up the TempoMap window, for editing tempo and signature changes in the
score:

Working with WFSCollider : Interface (or GUI) : Score window

 33

follow:

When enabled, this makes the score editor automatically zoom in to the current play
position. This

update:

When enabled, this shows the current play position in the Score during playback.

OSC:

When this is enabled, you can control the Score with OSC messages. In the post
window (Cmd-\) some information will be shown about the port and type of
messages the score responds to.

mouse
Shift-click on Events to select multiple Events.
Click-drag on an empty part in the Score to select multiple Events.
Double-click on an empty part to sets the current play position.
Double-click on the Event to open the Chain window.
Double-click on a Folder event to open it’s score.
Cmd-drag: allows drag and drop of events to other score windows.
Alt-drag: copies an Event.

key commands
backspace: delete selected Events
space bar: start/stop/unpause playback
, (comma): start/unpause
. (period): stop
p: pause/unpause
l: loop on/off
d: duplicate selected
i: edit selected
0 (zero): Score position to zero
1-9: Score position to Marker index (or end of score)
+/-: Score position to next/previous marker
arrows up/down: change track of selected Events
arrows left/right: move selected Events or Score position by one snap unit

Working with WFSCollider : Interface (or GUI) : Chain window

 34

Chain window

interface elements in the toolbar

power

You can hear the Chain by clicking on the power button of the Chain window on the
top left of the toolbar.

<-/-> arrow buttons

Undo/redo last change. This applies only to changes that require the window to
rebuild; i.e. changing/adding/removing a Unit or UMap

color box

This shows the display color of the event. The default colors are dependent on event
type. To change the color, click on this box to open the color editor. If a user-
defined color is used, a small cross will show in the upper right corner of the box.
Clicking that will remove the user-defined color, and reset to the default.

Working with WFSCollider : Interface (or GUI) : Chain window

 35

single window
If single window is selected and you double-click on an Event in the Score window,

this will not open a new Chain window, but in an already existing Chain window.
Of single window is deselected, double-clicking on an Event in the Score window will

open a new Chain window.

startTime/startBar

Shows the start time of the Event. Modes:
‘startTime’: shows the startTime in HH:MM:SS:FFF (F = 1/1000 s)
‘startBar’: shows the startTime in bar/beat format: bar/beat/div (1/1000 beat)

lock

When enabled, the startTime is locked to it’s current value (in seconds). This state is
not saved with the score.

duration/endTime/endBar

Shows the length or end time of the Event. Modes:
‘duration’: shows the duration in HH:MM:SS:FFF (F=1/1000 s)

 ‘endTime’: shows the end time of the event (startTime + duration)
 ‘endBar’: shows the end time in bar/beat format: bar/beat/div (1/1000 beat)

inf

Play the Event infinitely long. With soundfiles playing from bufSoundFile or
diskSoundFile, you have to set the loop button in these Units to actually hear the
soundfile infinitely long.

from soundFile

Sets the length of the Event by the length of the longest soundfile in the chain.

fadeTimes

Start and end fade time in seconds.

fadeCurves
A curvature setting for each fade time. 0 means a linear fade, negative values speed

up the fade at the start, positive values slow it down. In the score editor the
shape of the fade curve will be displayed.

releaseSelf

When releaseSelf is enabled, an event will have a fixed duration. It will take care of
itself after the score playback engine has started it. This could also be regarded as
“one shot” events. When releaseSelf is disabled, the score playback engine will
take care of the releasing. This means, that if one would pause the score while
this event is playing, it will keep playing until the score is resumed and passes the
point where it was supposed to stop. This feature may be less reliable for very
short events.

gain

Change the level of the sound.

mute

mute will mute the level of the event. Contrary to the “disable” button in the score
editor (loudspeaker icon) the event will still play, only it will not be audible. This
means a sound can be muted and unmuted during playback, and the effect will be
audible immediately.

Working with WFSCollider : Interface (or GUI) : Chain window

 36

udefs

Click on defs at the bottom of the Toolbar to open the Udefs window. Form there you
can drag Udefs to replace or insert in the various Units below the line, and
UMapDefs to drag UMaps to parameters of the Units.

code
Click on code to see the code editors of the Udefs if the Udefs are editable. This calls

up the code window (described below)

i/o

This calls up the i/o window. Here you can change the connections between the defs.

params

If you switched to the code or the i/o window, you will see a params button that
takes you back to the parameters window.

parameters window

Below the line in the parameters window you will find the “units” of which the chain
consists. Each Unit is based on a Udef (as found in the Udefs window), and takes care of
a specific process in the chain. For example, there are Udefs for Units that can play a
soundfile, or generate a sine wave. There are also Udefs for Units that can apply certain
effects upon the sound of the previous Unit. And there are dedicated Udefs for Units
performing WFS rendering. Each Unit has it’s own set of parameters, which are shown
and can be edited in the window. The signal path travels from top to bottom; each Unit
gets sound and control input from the Unit above it. The Unit that brings the sound to
the outputs of the system (such as the WFS panner Units) should always be at the
bottom of the page; at the end of the signal path.

buttons

bounce
This button records the output of the Unit into a new soundfile, and replaces the

unit itself by a diskSoundFile unit playing it. It records only the output of the
unit, and leaves the rest of the chain unchanged. If you need the soundfile,
but don’t want to replace the unit, press the ‘undo’ button at the top of the
window after this action. This will restore the unit but not delete the soundfile
you just recorded.

minus (-)

Click on this button to delete the Unit. There always has to be one Unit in the
chain for it to be able to play. To be able to hear the sound, there also must be
at least one Unit that brings the sound to the outputs of the system (a WFS
panner Unit, or for example an “output” Unit)

plus (+)

Click on this button if you want to duplicate this Unit. A copy of the unit will be
placed after it in the chain. The input and output buses of the copied unit
(which can be edited in the i/o section) are automatically increased by one
step, so that the unit outputs on different channels. This means that you can
have multiple units of the same type working in parallel inside the chain. You
can use the ‘mixer’ or ‘splay’ Udefs to mix their outputs together, or use

Working with WFSCollider : Interface (or GUI) : Chain window

 37

multiple output (i.e. wfs_panner) units in the chain. When doing this the Unit
view goes into ‘mass-edit’ mode; you can edit all units of the same type at
once. The mass edit mode is explained further elsewhere in this manual. To
edit the units separately you can use either the [▲] button that appears
instead of the ‘bounce’ button, or press the ► button that appears next to the
‘units’ label in the header of the window.

mouse

Drag a Udef from the Udef window on the pale gray rectangles or under a Unit, until you
see a blue line, to add a Unit based on it to the chain. (the blue line unfortunately
doesn’t show on linux / qt versions).

Drag a Udef on top of a Unit (you should see a blue rectangle) to replace it.

cmd-dragging a Unit will move it inside the chain, or copy it to another chain (drag and
drop).

For each Unit you can change the settings of the parameters. Changing the setting will
be immediately audible, unless there is a “(i)” behind the parameter name (meaning:
‘init’), in which case it will only be effective at the next playback.

UMaps

Drag an UMapDef on top of a parameter name to connect it to a parameter. The
parameters that accept the UMapDef will show a blue rectangle during the dragging. The
picture below shows a ‘sine’ Unit with an ‘envelope’ UMap connected to it’s ‘freq’
parameter. The ‘-’ button will remove the UMap and restore the default value. Using the
‘▼’ button you can show or hide the UMap’s settings in the display.

Working with WFSCollider : Interface (or GUI) : Chain window

 38

code window

If the Udef is editable, you see the code of the Udef. Changing code here will create
what we call a “Local Udef”. It will be used for this Unit only, and saved inside the score.
Local Udefs keep the name of the original Udef on which the editing started.

For each Udef there are 3 parts in this window:

Function:
This is the code for that defines what the Udef will do.

Argument Specs:

This defines the buttons in the parameters window and how they look.

Category:
This defines the category folder in which the Udef will end up in the Udefs window

Working with WFSCollider : Interface (or GUI) : Chain window

 39

Below each of these 3 parts are two buttons: revert and OK.

revert

Undo the changes you made to the Udef. This is only possible before you save the
changes.

OK

Save the changes you made to the Udef.

If you have edited the Udef and clicked on OK below one of the 3 parts of the code, 2
buttons will appear on the top bar of the Udef: revert and save as Udef.

revert

Undo all changes to the code, and restore the plug-in to the last saved state.

save as Udef

A save dialog opens and you can save the Udef as a normal Udef. It will be used
immediately for your Unit, and also show up in the Udefs window. If you save (or
later put) it in the same folder as where your score file is located, it will be loaded
automatically the next time you open your score. If you put it somewhere else,
you will need to load it manually before opening the score. The Udef will get the
same name as you give your file.

Working with WFSCollider : Interface (or GUI) : Chain window

 40

i/o window

The i/o window shows the audio connections between the units. Each unit (or UMap) that
has audio inputs and/or outputs is shown in the list. Each ‘in’ and ‘out’ is connected to a
certain bus. An input reads from it, and an output replaces the bus contents with the
output sound from the unit. The signal flow in the buses is from the top to the bottom
(head to tail) of the chain; if a unit outputs to a bus, the units below it can receive it. If
a unit below replaces the output with something else, the units that follow after it will
get that sound instead.

Some units may have ‘mix’ slider, which allows sound that was already in the bus to be
mixed with the output of the unit. If the mix slider is set to zero, or if there is no mix
slider, the ‘out’ will replace anything that was on the bus before the unit. In some units,
the ‘in’ will block the bus, meaning that the signal that was in the bus before the ‘in’ is
replaced by silence. This is mostly the case by units at the end of the chain, such as the
wfs_panners. There is a fixed number of buses within a chain, with a maximum of 32.

The graphic interface tries to show as clearly as possible which signal goes where, by
visualizing the buses as thick and thin lines, red dots for outputs and green dots for
inputs. By following the thick lines you can see exactly which unit sends and receives
from which. In many cases there is only a single bus in use, to and from which all the
units in the chain read and write.

in

For each input (there can be multiple inputs on a single unit) a green label is
shown, and next to it a slider with a green dot and a number box to set the bus to where
the input is connected to.

Working with WFSCollider : Interface (or GUI) : Chain window

 41

out
For each output (there can be multiple inputs on a single unit) a red label is

shown, and next to it a slider with a red dot and a number box to set the bus to where
the output is connected to.

mix

For units that support mixed output, a ‘mix’ slider is shown. It always applies to
the ‘out’ that is immediately under it. When the slider is set to zero no signal is mixed in,
and the unit behaves like a unit without mixed output. If the slider is opened, signal
from previous units that output to the same bus is let through. This way multiple units
can be easily mixed together in one bus.

Working with WFSCollider : Interface (or GUI) : Mass edit window

 42

Mass edit window

When multiple Events are selected in the Score window and the (i) button is pressed (or
the events double-clicked), the Mass edit window appears. In this window the common
parameters of all selected events can be edited at once. The Mass editor intelligently
scans through all UChains to see which Units are similar, and displays them together as
one Unit. The interface elements of the Mass editor are the same as for the normal Chain
window, but some of them work differently.

power

This button will play or stop all selected events together at the same time.

color box
This shows the display color of the event. If there are differences between colors of

the selected Events, the color box will show the average color. Changing the color
by clicking the box will give all selected events the same color

single window

If single window is selected and you double-click on an Event in the Score window,
this will not open a new Chain window, but in an already existing Chain window.

Of single window is deselected, double-clicking on an Event in the Score window will
open a new Chain window.

startTime/startBar

Shows the start time of the first selected Event. Changing the startTime will move all
events together as a group. Modes:
‘startTime’: shows the startTime in HH:MM:SS:FFF (F = 1/1000 s)
‘startBar’: shows the startTime in bar/beat format: bar/beat/div (1/1000 beat)

Working with WFSCollider : Interface (or GUI) : Mass edit window

 43

lock
When enabled, the startTime of the selected events are locked to their current value

(in seconds). This state is not saved with the score.

duration/endTime/endBar

Shows the average duration of the selected events. Changing this will add or subtract
duration from all selected events. Modes:
‘duration’: shows the duration in HH:MM:SS:FFF (F=1/1000 s)

 ‘endTime’: shows the end time of the first event (startTime + duration)
 ‘endBar’: shows the end time in bar/beat format: bar/beat/div (1/1000 beat)

inf

If the majority of the selected Events has infinite duration, this will be highlighted.
Setting it manually will make all events use infinite duration (or not).

from soundFile

Sets the length of the Events by the length of the longest soundfile in the chain. This
is done for each of the selected Events separately. Events that don’t have
soundfiles will be ignored

fadeTimes

Start and end fade time in seconds. Changing this will affect all selected events.

releaseSelf

When releaseSelf is enabled, an event will have a fixed duration. It will take care of
itself after the score playback engine has started it. This could also be regarded as
“one shot” events. When releaseSelf is disabled, the score playback engine will
take care of the releasing. This means, that if one would pause the score while
this event is playing, it will keep playing until the score is resumed and passes the
point where it was supposed to stop. This feature may be less reliable for very
short events. Changing this will affect all selected events.

gain

In the MassEditor the average gain setting of the selected Events is shown. Changing
it will add or subtract from each UChain individually, keeping the differences
between them.

mute

mute will mute the level of the event. Contrary to the “disable” button in the score
editor (loudspeaker icon) the event will still play, only it will not be audible. This
means a sound can be muted and unmuted during playback, and the effect will be
audible immediately. The mute switch is highlighted if more than half of the
selected Events is muted. Changing it will mute or unmute all events together.

udefs

Click on Udefs at the bottom of the Toolbar to open the Udefs window. Form there
you can drag Udefs to replace them in the various Units below the line. Replacing
will change the Udef for all selected Chains that contain the previous one. It is not
possible to change order, remove or add Units to the selected Chains via the Mass
edit window.

Below the line in the parameters window you will find the “units” of that are in the
selected UChains. For each Unit type it shows how many times it was found. If only one
Unit is found of a certain type, it will show as a normal Unit editor (all parameters can be

Working with WFSCollider : Interface (or GUI) : Mass edit window

 44

changed individually). If multiple Units are found of one type, you will see what we call
Mass edit Units.

For most parameter types there are mass editing options. The most elaborate one is for
single values that show up as sliders in the normal UChain window. In the mass edit
window they become range sliders, which show the lowest and the highest setting found
among the selected events. Changing these will scale the settings of all selected Units
between these minimum and maximum values. There is also the do menu, which shows
a number of array operations that can be performed on all parameters together. And
there is the edit button, which brings up an editable plot window, where all parameters
can be accessed individually or “drawn” together.

For WFS points there will be only an edit button, which brings up a window similar to the
Path Editor, where all points can be edited together. For sound files, there will be three
buttons. The list button brings up a text window with a list of all the file paths. The copy
all button enables the user to copy all the sound files in the selected events to a single
new location. It brings up a file save window to select the new location. There you will
need to enter a file name, but the files will keep their own name. The folder button will
bring up a file open dialog, where the user can select multiple soundfiles. They will be
assigned consecutively to the units.

Working with WFSCollider : Interface (or GUI) : Udefs window

 45

Udefs window

The Udefs window shows all currently loaded Udefs and UMapDefs. They can be dragged
and dropped into the Chain or Mass edit window to replace or add Units and UMaps.
Udefs can replace and Units in the Chain, by dragging them on the unit name or on the
gray areas above and below it.

There are various categories of Udefs shown in the Udefs window. Categories such as
‘oscillator’ and ‘soundFile’ contain Udefs that generate sound, categories such as ‘effect’
and ‘filter’ have Udefs that process sound (typically placed after a sound-generating
Unit) and categories such as ‘wfs_panner’ contain Udefs to output sound to the
speakers. Every Chain should have at least one of the latter included, normally at the
end (bottom) of the Chain, and one of the generative categories at the beginning (top).

Working with WFSCollider : Interface (or GUI) : Udefs window

 46

The UMapDefs are shown in blue in the Udefs window. UMapDefs are used for
modulating parameters (args) of Units. When dragging an UMapDef, the labels of all
parameters that are able to use it will show a blue rectangle.

There are various categories of UMapDefs that apply to specific parameter types. For
example the UMapDefs in the ‘point_xxx’ categories can only be used on Point
parameters (such as the ‘point’ on a ‘wfsDynamicPoint’ Unit).

show all/hide all

Open or close all category ‘folders’ with Udefs or UMapDefs

refresh

Rebuilds the Udefs window.

load all

Loads all Udefs and UnitRacks or UMapDefs from the default directories.

Working with WFSCollider : Interface (or GUI) : Marker window

 47

Marker window

The Marker window is the editor for UMarkers. Markers are Events that can perform
actions at specific times in a Score. They can also hold text notes, and always have a
name.

color box

This shows the display color of the event. The default color for UMarkers is yellow. To
change the color, click on this box to open the color editor. If a user-defined color
is used, a small cross will show in the upper right corner of the box. Clicking that
will remove the user-defined color, and reset to the default.

single window

If single window is selected and you double-click on an Event in the Score window,
this will not open a new Chain or Marker window, but use an already existing
window.

Of single window is deselected, double-clicking on an Event in the Score window will
always open a new window.

name
Specify the name of the marker here. The name is also shown in the Score editor.

startTime/startBar

Shows the start time of the Marker event. Modes:
‘startTime’: shows the startTime in HH:MM:SS:FFF (F = 1/1000 s)
‘startBar’: shows the startTime in bar/beat format: bar/beat/div (1/1000 beat)

action

This shows the function to be executed at the start time of the Marker. By default, an
empty function is here. The function is written in the SuperCollider language. The
arguments passed to the function are ‘marker’ and ‘score’. The marker is the
Marker itself, the score is the Score where the marker is in. From there all Events
in the Score and also the Score itself can be controlled.

Working with WFSCollider : Interface (or GUI) : Marker window

 48

edit button
The edit button opens up a window where you can edit the Marker action. To see

some examples of functions that could be in here, select one of the presets at the
bottom of the Marker window.

autoPause

If checked the marker will automatically pause the score time line when it passes. In
WFSCollider pause doesn’t stop the sound, it only stops the timeline. Any still
sounding events will keep playing for their normal duration. Events with
“releaseSelf” unchecked will keep on playing until the timeline is resumed and
their end position is passed. This functionality can be useful for following a score
played by an acoustic ensemble.

notes

You can type text into this large text box. This text will be saved with the score. It
can be used to add remarks to your score.

Working with WFSCollider : Interface (or GUI) : Plot window for WFSPaths

 49

Plot window for WFSPaths

The plot window shows a projection of the whole spatial trajectory in a path. The blue
circles are the stored points of the path, and the gray line is the actual trajectory,
including the spline curves. The white and red dots mark the beginning and end of the
path. The red/brown lines show the position of the loudspeaker arrays. The white grid in
the background shows meters, and the thick white lines cross in the center of the space
(at coordinate (0,0)). The x axis goes from left to right (negative to positive), and the y
axis from bottom to top (negative to positive), or i.e. from back to front. The path
consists of a collection of points and transfer times between them. Also it holds
information of the type of interpolation to be used in between the points (b-spline by
default).

Working with WFSCollider : Interface (or GUI) : Plot window for WFSPaths

 50

Tools in the toolbar

Selector menu on the top left of the toolbar

move
Is equal to a translation of the selected points.

scale
The selected points are scaled according to the distance of the center.

rotate
The selected points are rotated around the center (with a fixed radius).

rotateS
The selected points are rotated around the center and scaled according to the

distance from the center.
elastic

Moves all points (not only the selected ones) in an “elastic” way
 twirl
 Same as elastic, but with polar coordinates, creating a “twirl” effect
 chain
 Moves all points while keeping equal distance between them.

lock
Locks all points so that they cannot be altered.

Selection

Rubberband selection

You can select point by clicking on a point. You can add points to a selection by shift-
clicking on a point. With the rubberband selection you can select all the points
that are inside the rubberband.

With alt-drag you can move the canvas.

Move tool

If you click in the background, you can move the canvas.
If you click on a selected point, what happens depends on the selector menu.

Zoom tool

With the zoom tool you can zoom in. Click drag to select the area. To see the whole
movement, double-click on the background.

With alt-drag you can move the canvas.

In all of the above modes it is also possible to drag and drop paths in and from the
window, with cmd-drag. Dragging a path from the window to an empty text window will
convert it to SuperCollider source code. This code can also be dragged back into the
editor window to replace the current path. It is also possible to drag paths between
multiple path editors. In every case the path will be copied into the new editor to
become a new unique object.

Record tool

With the record tool you can record your drawing in the Path Editor. Speed is
recorded as well.

Play tool

Plays the path as a graphic animation/

Working with WFSCollider : Interface (or GUI) : Plot window for WFSPaths

 51

Time slider
Move manually through the path.

Undo

Undo the last edit.

Redo

Redo the last edit you undid.

The Speed and Time display at the bottom of the window

The dots in the middle of this window correspond to the point on the path in the top
window. In the window the points are set out on the time-axis. The green point is the
first point on the path, the red point is the last point on the path.

If the speeds are high enough, in between two points you can see a blue bar that
corresponds to the speed of the movement between two points. The higher the bar, the
higher the speed.

Working with WFSCollider : Interface (or GUI) : Path Editor

 52

Path Editor

The path editor can be called up from any ‘trajectory’ UMap in the Chain editor, via the
[edit] button. It holds a plot window (as described above) and a side bar for editing
operations.

Tools on the right-hand side of the window

name

Give the path a name. This name will only be visible in the path editor itself.

Type, curve and clipMode all have an effect on the curve of the path.

type

bspline
cubic
linear

Changes how the curve will move through the points.

Working with WFSCollider : Interface (or GUI) : Path Editor

 53

curve
Has an effect if in the type-menu cubic or linear is chosen.

In linear mode the effect is not visible in the editor (the lines will remain straight),
but will be audible.

A curve value lower than 1 will result in a lower speed near the points, and a
value higher that 1 will result in higher speed near the points.

 In bspline mode the curve setting will have no effect.

clipMode

clip
wrap
fold

Has an effect on the curve at the start and endpoints.
With wrap selected the curve acts as if the endpoint would continue at the

startpoint.
With fold selected the curve acts as if the endpoint continues by following the

curve backward (folding back).
With clip selected, the start and endpoints act as if there is no continuation.

Center and move both influence the position of the path:

center

Enabling this button will move the path or selected points to the center. If only one
point is selected it will be moved to position (0,0), which means the ‘move’
parameters below can be used to enter the absolute position of the point. If
multiple points or nothing is selected, the path will retain its shape, but be
centered around it’s mean position.

move

A translation of the selected points, or all points if none is selected.
By click-dragging on the move arrows in between the points, you can move as

well.

scale

The selected points, or all points if none is selected, are scaled according to the
distance of the center.

rotate

The selected points, or all points if none is selected, are rotated around the center of
the space.

Smooth en window together define the smoothing of the whole curve.

smooth

Makes the corners in the curve smoother. Negative values exaggerate the corners.

window

Defines the length of the path that is taken into consideration when smoothing the
curve. A value of 0 means no smoothing is done.

Working with WFSCollider : Interface (or GUI) : Path Editor

 54

Size and mode together can be used to increase or decrease the number of points in the
curve.

size

Defines the number of points in the curve. Changing this value will add or remove
points according to the ‘mode’ setting below.

mode

interpolate
wrap
fold

Interpolate leaves the path as it is, and increases or decreases the number of
points between the endpoints.

Wrap adds points to the curve, starting with the start point as the next point, and
so on. It is in fact repeating the curve.

Fold continues the curve with the point before the last point, and so on. It is in
fact reverse repeating, and after the start point is reached, the direction is
changed to the forward direction again.

clip

limits the trajectory to the area specified by clipCenter and clipRadius in various ways
softClip: clip using a soft-clipping algorithm
sineClip: clip using a sine-wave based soft-clipping algorithm
fold: the points are mirrored against the clipping borders
wrap: the points are wrapped (modulo) around the clipping borders
excess: center/residue clipping; the clipping area is cut away in the middle
off (default): no clipping applied

clipSoftness
softening amount for clip (works for all modes)

clipCenter, clipRadius

the center and radius of the clipping area

polar

if checked, puts clip in ‘polar’ mode; i.e. using an ellipse to clip to rather than a
rectangle.

sort

off
distance
angle
scramble
nearest
rel_angle
x
y
mean_xy

 Sort the positions in the path according to setting. When ‘off’, no sorting is
applied. ‘distance’ and ‘angle’ will sort the points using polar coordinates, ‘x’, ‘y’ and
‘mean_xy’ use cartesian coordinates. The ‘nearest’ and ‘rel_angle’ (relative angle) use a
point-by-point sorting algorithm. ‘scramble’ will do the opposite of sorting; randomize
the order of the points.

Working with WFSCollider : Interface (or GUI) : Path Editor

 55

duration
Defines the duration of the path. Changing the duration is also reflected in the Chain

window.

Equal, amount and resample can be used to smooth the time or speed differences
between the different points on the path. The time and speed differences can also be
seen in the time and speed window at the bottom of the Path Editor.

equal

times
speeds

Choose if you want to equalize time differences or speed differences.

amount

Drag it to the right: if set to 1, all times, or all speeds will be equal (depending on the
setting of the equal menu). If you set it to -1 differences will be exaggerated (if
there were differences to begin with...).

resample

If you have a path that has differing speeds, set equal to 'speeds', and amount to 1.
You will see that resample will divide all points evenly over the path.

reverse

Reverses the order of the points in the path, or certain aspects of it
 all: reverses positions and times
 x: reverses only the x axis positions
 y: reverses only the y axis positions
 angles: reverses the angles (from center), keeps the distances and times
 distances: reverses the distances (from center), keeps the angles and times
 positions: reverses the positions, keeps the times
 times: reverses the (delta) times, keeps the positions

apply

Apply all changes you have made in this window to the data of the path, and reset all
controllers.

reset

Reset the path to the original data, and reset all controllers.

generate

Opens the Path Generator.

Working with WFSCollider : Interface (or GUI) : Path generator

 56

Path generator

size

Size reflects the size in the Path Editor. To start a completely fresh path with 2
points, set size to 2 and click on apply (at the bottom). If you do not click apply,
the data of the path you started with will be recalled if you add points.

duration

Duration reflects the duration in the Path Editor.

There are 3 sections underneath this. Each of the 3 sections has the same possibilities.
They provide different types of trajectory generation and adaptation.

menu

Sets the type of generator to one of the following types:
align
brown
circle
line
lineTime
lissajous
orbit

Working with WFSCollider : Interface (or GUI) : Path generator

 57

polygon
randTime
random
sine
spiral
spline

Each generator type is described in detail in the section below.

amount slider

With the amount slider you can set how much of the chosen process in the menu will
be applied to the path. Beware: the slider has a default value of 0. If you do not
change this value, nothing will happen if you change the settings.

x menu

This menu is available in all place processes, but not in time processes.
bypass
replace
+
-
*
min
max

Each of these choices defines the way the process will be applied to the x-axis.
bypass: noting will happen.
replace: replace the data of the path with the values of this process.
+: add the values of this process to the data of the path.
-: subtract the values of this process from the data of the path.
*: multiply the values of this process with the data of the path.
min: (is reversed) sets the maximum value of the data of the path.
max: (reversed) sets the minimum value of the data of the path.

y menu

This menu is available in all place processes, but not in time processes.
bypass
replace
+
-
*
min
max

Each of these choices defines the way the process will be applied to the y-axis.
bypass: nothing will happen.
replace: replace the data of the path with the values of this process.
+: add the values of this process to the data of the path.
-: subtract the values of this process from the data of the path.
*: multiply the values of this process with the data of the path.
min: (is reversed) sets the maximum value of the data of the path.
max: (reversed) sets the minimum value of the data of the path.

Working with WFSCollider : Interface (or GUI) : Path generator

 58

time
This menu is available in the time process, but not in the place processes.
bypass
replace
+
-
*
min
max

Each of these choices defines the way the process will be applied to the y-axis.
bypass: nothing will happen.
replace: replace the data of the path with the values of this process.
+: add the values of this process to the data of the path.
-: subtract the values of this process from the data of the path.
*: multiply the values of this process with the data of the path.
min: (is reversed) sets the maximum value of the data of the path.
max: (reversed) sets the minimum value of the data of the path.

The generator processes in the Path Generator

align

This is a position generator that alters the positions in the current trajectory.
It aligns all positions to a single line or circle by projecting them on it, or it equals the

spacing between positons over an axis.
direction

In ‘line’, ‘spacing’ and ‘spacing_nearest’ mode, the direction slider sets the angle
of the line. 0 means the x axis, 1 the y axis.

mode
line: project the positions on a straight line
circle: project the positions on a circle
spacing: equally distribute the positions along an axis (x or y or in between

according to ‘direction’ slider)
spacing_nearest: same as spacing, but first makes sure the order of the positions

remains the same as in the original

brown

This is a position generator.
It creates a brownian random path based on polar coordinates. Each point is

calculated by adding a random angle and distance to the previous point.
center

The center that is used as a reference for the scaling.
radius

The amount of scaling.
angleStep

The maximum angle step per point
step

The maximum distance step per point
seed

Seed for the random generator. Change this to get another random distribution.

Working with WFSCollider : Interface (or GUI) : Path generator

 59

circle
This is a position generator.
If you want a circle, do not forget to set clipMode in the Path Editor to wrap, so the

start and end point behave as if they are connected.

periods
1 period is 1 whole circle.

close
If you want to end the path at the point it started, check this box. If you forgot

the direction of the closed path, press play in the Path Editor.
startAngle

The angle of the start point in degrees (-180 to 180)
clockwise

The direction of the path.
center

The center that is used as a reference for the scaling (= the center of the circle).
radius

The amount of scaling in the x an y direction (x and y radius...) of the circle.

line

This is a position generator.
start

Start point of the line.
end

End point of the line.
curve

The first value sets the curve to convex or concave, the second value defines the
sharpness of the curve.

lineTime

This is a time generator, influencing only the times between the points. The total
duration of the path will remain the same with any setting of this generator.

start
The relative duration of the first segment

end
The relative duration of the last segment

curve
This value defines a curvature in the interpolation between the first and last

segment. A curve setting of ‘0’ means a linear interpolation, a positive curve
makes the curve lean towards the start duration.

Working with WFSCollider : Interface (or GUI) : Path generator

 60

lissajous
This is a position generator.
This generator creates Lissajous curves

(http://en.wikipedia.org/wiki/Lissajous_curve). This is done by combining
different sinusoidal functions to the x and y axes.

periods
1 period means 1 cycle during the whole path. The period can be set for the x and

y axes separately
close

If you want to end the path at the point it started, check this box.
startAngle

The phase of the sine wave, set for x and y axes separately in degrees (-180 to
180)

center
The center that is used as a reference for the scaling (= the center of the circle).

radius
The amount of scaling in the x an y direction (x and y radius...).

orbit

This is a position generator.
It creates an orbit around the center point, similar to the ones found on objects in

outer space. In default settings the orbit generates a circle, but it becomes
different with the ‘eccent’ and ‘eccentAngle’ settings.

periods
1 period means 1 cycle during the whole trajectory

close
If you want to end the trajectory at the point it started, check this box.

startAngle
The angle of the start point in degrees (-180 to 180)

clockwise
The direction of the trajectory.

center
The center point for the trajectory.

radius
The amount of scaling in the x an y direction (x and y radius...).

eccent
The amoint of orbital eccentricity

eccentAngle
The angle of the orbital eccentricity (-180 to 180 degrees)

Working with WFSCollider : Interface (or GUI) : Path generator

 61

polygon
This is a position generator.
It creates a polygon shape with a specified number of sides, regardless of the amount

of positions in your trajectory.
sides

number of sides (2 or more). Doesn’t need to be a whole number.
orientation

If orientation is 0 (default), the upper side of the shape will be a corner. If -1 the
shape will be rotated to the left so that the upper side of the shape aligns with
the first side of the polygon. At +1 the same rotation is applied to the right.

offset
Sets there the starting point of the trajectory on the shape (0-1)

close
If you want to end the path at the point it started, check this box.

periods
1 period is 1 whole cycle over the shape

clockwise
The direction of the trajectory.

center
The center that is used as a reference for the scaling (= the center of the shape).

radius
The amount of scaling in the x an y direction (x and y radius...) of the shape.

randTime

This is a time generator.
min

The minimum time.
max

The maximum time.
seed

Seed for the random generator. Change this to get another random distribution.

random

This is a position generator.
center

The center that is used as a reference for the scaling.
radius

The amount of scaling.
seed

Seed for the random generator. Change this to get another random distribution.

Working with WFSCollider : Interface (or GUI) : Path generator

 62

sine
This is a position generator.
periods

Number of periods of the sine wave (between 0 and 2 pi).
phase

Starting phase of the sine wave.
start

Location of the start point.
end

Location of the end point.
amp

Amplitude of the sine.

spiral

This is a position generator. A spiral is a circular path that can start and end with
different radius and center. The settings are similar to that of the circle generator

periods
1 period is 1 whole circle.

close
If you want to end the path at the point it started, check this box.

startAngle
The angle of the start point in degrees (-180 to 180)

clockwise
The direction of the path.

startCenter
The center coordinate (x,y) of the circle at the beginning of the path

startRadius
The radius of the circle at the beginning of the path. Different x and y values can

create an elliptical circle.
endCenter

The center coordinate (x,y) of the circle at the end of the path
endRadius

The radius of the circle at the end of the path

spline

This is a position generator.
start

Set the start point.
end

Set the end point.
c1

The curve controller of the start point. (Try start (-5, -5), end (5,0) and c1
(0, -5), and next c1 (-5, 0), to get a feeling for what this means).

c2
The curve controller of the end point.

More about Units and UChains

Signal flow

The signal flow inside a UChain is organized in buses. Each bus has its own number (0-
31) and is assumed to be empty at the beginning of the chain. In most common cases
only one bus is used throughout the chain. For example, the default UChain (which is
created when a new event is made in the Score Editor) contains a ‘bufSoundFile’ Unit
and a ‘wfsSource’ Unit. The ‘bufSoundFile’ generates output to bus 0, and the
‘wfsSource’ reads from that bus. The signal flows downwards from the top of the UChain
to the bottom. If the ‘bufSoundFile’ would not be placed before the ‘wfsSource’ Unit
there would be no sound, because the ‘wfsSource’ in that case would read from the bus
before the ‘bufSoundFile’ has written to it. This is the way things connect in a chain.

Things can however get more complex within a UChain. A maximum of 32 audio buses
can be uses within a single UChain. This enables the use of multichannel audio files, but
also situations where processed versions of a signal live alongside the original version, or
where a single signal is distributed over multiple wfs sources. There are a number of
Udefs that can help in this kind of situations. For example ‘duplicateChannel’, ‘mixer’ and
‘splay’ which can respectively add copies of signals to other buses, mix signals from
multiple buses together and distribute an arbitrary number of buses over another
number of buses. Also the ‘+’ and ‘-‘ buttons enable easy multichannel expansion of
units in the chain; with the ‘+’ button a copy of the Unit is added and automatically set
to output on the next bus number. The ‘i/o’ button sends the user to the bus number
allocation panel, where the inputs and outputs of all units can be assigned to bus
numbers. This may involve some clever planning, but is highly flexible. It all works as

bufSoundFile

wfsSource

bus 0

Working with WFSCollider : More about Units and UChains : Signal flow

 64

long as the output and input bus numbers correspond and the order of the units is
correct. Every time a unit outputs to a bus, the previous contents of that bus are
overwritten. Some units have a ‘mix’ slider with which the previous content of the bus
can be mixed with the new content. Below is an example of a chain that creates a source
with a soundfile and another source with a 0.25s delayed version of the soundfile.

UChain editor UChain i/o editor

Signal flow

bufSoundFile

duplicateChannel

delay

wfsSource

wfsSource

bus 0

bus 0

bus 1

bus 1

Working with WFSCollider : More about Units and UChains : Bouncing

 65

Bouncing

The ‘bounce’ button on most units can be used to mix part of the chain into a single
audio file. This can be used for example to save cpu power, or if the chain gets
needlessly complex. When the bounce is used WFSCollider use that unit and all units
before it in the chain to create a mixdown. A file saving dialog shows up to allow the
user to give a name and place for the soundfile (which should typically go in the same
directory as your score file). The mixdown will happen in non-realtime and have as many
channels as the bounced unit. After the mixdown is complete the unit itself will be
replaced by a ‘diskSoundFile’ unit with the bounced file. In most cases it would make
sense to remove all preceding units after this operation is completed. Below is an
example of a bounce of a UChain with some filtering and delay modulation:

step 1 step 2

step 3 (result)

Working with WFSCollider : More about Units and UChains : Multi-channel operation

 66

Multi-channel operation

In most cases a UChain will contain only one audio channel, leading to a single
wfs_panner source. It is possible though to use multiple channels inside one chain. This
can be useful for example to process stereo or multi-channel audio files, or to program
inter-relations between multiple sources. There can be up to 32 audio channels in a
single UChain. The example below shows how to create a two-channel UChain starting
with a loaded stereo audio file (named SinedPink.aiff). The ‘bufSoundFile’ Unit (and all
other soundfile related units) will automatically become multi-channel if a multi-channel
soundfile is loaded. This is shown in the graphic interface, which now says “2 channels”.
The rest of the chain however is still single-channel; it will need to be made
multichannel, and the user can fully decide what happens with each of the channels. In
the example below we start out with a single-channel UChain, consisting of a soundfile, a
low pass filter and a dynamic point source. They are all single-channel units, but as soon
as the stereo soundfile is loaded the first unit becomes two-channel. In this case we
want both channels to get their own low pass filter and point source. To accomplish this
we press the (+) button on both the lowPass and wfsSource units. This creates a copy of
each of the units, which are automatically assigned to the neighboring channel.

In the interface the lowPass and wfsDynamicPoint units now both state “(2 units)” in
their headers, and the sliders and controls are now mass-edit controls (controlling the
range of values rather then the individual ones. The signal changes as follows:

bufSoundFile

lowPass

lowPass

wfsSource

wfsSource

bus 0 bus 1

bufSoundFile

lowPass

wfsSource

bus 0 bus 1

X

Working with WFSCollider : More about Units and UChains : Multi-channel operation

 67

This means there is now a total of 5 (!) units in the chain. The individual units can be
shown and edited in two ways:

- Press the [>] button next to “units” at the top of the UChain window. This will

“unfold” the chain and show all units individually. You can now for example change
one of the low-pass filters into a high-pass by dragging a highPass Udef from the
Udefs window onto it. And you can edit the settings of each of the units individually

- Another way is to press a [^] button in one of the multi-units headers. This will open
up a new window with the individual units in it.

If you want to group-edit the positions of the sources you can also use the “edit” button
in which appears at the ‘point’ parameter of point sources. This opens up the
WFSPointGroup editor, where the points can be manipulated individually or as a group.

Working with WFSCollider : More about Units and UChains : Live input

 68

It is also possible to see and edit the signal flow of a (multi-channel) UChain. This is
done via the i/o button. This brings up an editor in which the input and output buses
(starting at bus number 0) can be assigned for each individual unit. In our example this
window will look as follows:

There are also a number of Udefs that can perform specific operations in multi-channel
signal flows. These are:

- ‘duplicateChannel’ : can duplicate a single channel to multiple channels, with

amplitude settings for each of them
- ‘mixer’: can mix multiple channels together into a single one
- ‘splay’: can mix or distribute multiple channels over another number of multiple

channels, and manipulate the order etc.

Also, a number of Udefs have a ‘numChannels’ parameter, by which the user can decide
how many channels are inputted and/or outputted from a single Unit. Examples of this
are ‘grainSoundFile’ and ‘gain’, and the multi-channel manipulation Udefs discussed
above.

When using UMaps in multi-channel situations it can sometimes be wise to use shared
values or points. For more information about that please refer to the next chapter; More
about UMaps.

Live input

On single-computer installs of WFSCollider, getting live sound input into a UChain is
quite easy. Just insert a ‘soundIn’ unit and choose the correct input bus (starting at 0).
However, this method will not work on larger multi-computer setups such as the Game
Of Life WFS system (GOL). This section is about accomplishing live input on that
particular system.

On the GOL system the sound inputs need to be distributed over the multiple rendering
servers, via the ‘master’ computer. The master computer has its own sound card, with
multiple analog inputs. From there a digital connection can route a maximum of 8
channels to the rendering servers (and from there to the speakers). Routing a signal
from the master inputs to the server outputs requires the use of two UChains playing
simultaneously. The first UChain will route the signal from the master computer inputs to

Working with WFSCollider : More about Units and UChains : Live input

 69

the server inputs. The second UChain will get the input on the servers and do further
processing and wfs rendering. In the score editor it would look something like this:

The first UChain needs to include at least a ‘soundIn’ and a ‘wfsMasterOut’ unit (from the
‘wfs_io’ category). These units force the UChain to be played on the master computer
and take care of the first part of the routing. In between the ‘soundIn’ and
‘wfsMasterOut’ there can be other units for processing the incoming signal. On the
‘wfsMasterOut’ unit make sure the ‘toServers’ box is checked (if unchecked the signal
will be sent to the master computer’s analog outputs instead). The second chain should
start with a ‘wfsServerIn’ unit, to get the sound into the chain. In the example of a
single live input channel sent to a static point without further processing on the GOL
system, the settings of the two chains should look like the pictures below. The bus
number (0-7) of ‘wfsMasterOut’ on the first chain should correspond with that of
‘wfsServerIn’ on the second chain. By using the ‘numChannels’ settings on the first chain
it is possible to route multiple channels at once to the servers, which will be sent to
subsequent bus numbers. Please note that there will always be some latency between
input and output.

More about UMaps

Nested UMaps

UMaps can be used to modulate, automate and control parameters of units. They can
also modulate, automate and control parameters of ... UMaps. This is what we call
nested UMaps. Each of the parameters of an UMap can itself be controlled by another
UMap. This creates a possibly infinite chain of modulators and makes many kinds of
advanced control signals possible. To do this simply drag a new UMapDef to the
parameter you want to control. The following example shows a sine oscillator of which
the frequency is controlled by an lfo sine.

Now, we can drag in a new ‘lfo_sine’ from the Udefs window.

This creates a nested UMap controlling the frequency of the first ‘lfo_sine’, resulting in
this case in a three-operator FM synthesis module (for those who know what that
means).

Some UMaps are constructed in such a way that they can also be inserted in the UMap
signal path, rather than being appended as in the example above. These are typically
the ‘filter’ UMaps, but also some of the ‘utility’ UMaps. Also the ‘point_...’ categories
include many UMaps that can be used to insert. For UMapDefs that qualify for this an
extra blue box shows up when dragging them from the Udefs window. The box is around
the name of the parameter of an already existing UMap. If for example we would want to

sine lfo_sine
freq

signal flow

signal flow

sine lfo_sine

lfo_sine

freq
freq

Working with WFSCollider : More about UMaps : Nested UMaps

 71

delay the output of an UMap, we could drag in a ‘delay’ UMap, to be placed in between
the ‘lfo_sine’ and the unit.

Pressing the (-) button on the ‘delay’ UMap in this case will remove the delay, but keep
the ‘lfo_sine’.

sine delay

lfo_sine

freq
value

signal flow

Working with WFSCollider : More about UMaps : Expand

 72

Expand

Some units have parameters with multiple values. For example points and ranges (two
values), or eq settings (multiple values). If you want to control those values individually
with UMaps, an ‘expand’ UMap (category: ‘convert’) needs to be inserted. ‘expand’
converts a number of supported multi-value parameters to named single values. Points
will become ‘x’ and ‘y’, ranges ‘lo’ and ‘hi’. Eq parameters will be expanded to a named
set of values. Each of these values can receive a single UMap. A few examples:

Specific ways of converting multi-value parameters to single or differently formatted
values are also available, such as the ‘polar’ for points (category: ‘point_utility’) and
various range options (category: ‘range’).

Working with WFSCollider : More about UMaps : Shared values

 73

Shared values

From version 2.2 and onwards WFSCollider supports a concept known as shared values.
Shared values enable UMaps to share their output among multiple units or parameters.

A shared value can be created by enclosing your UMap into a ‘shared_out’ UMap
(‘shared_io’ UMapDef category), or by creating a ‘shared_value’ unit (‘shared_io’ UDef
category) earlier in the chain. The value is shared within the chain, and recognized by an
‘id’ number (0-99). A shared value can be retrieved by the ‘shared_in’ UMap, which
typically needs to be further down the chain then the original ‘shared_out’ or
‘shared_value’. ‘shared_in’ offers extensive scaling options to make the value match the
desired range.

The signal flow of shared values can best be explained along a few examples. If we
would have two oscillators, let’s say a ‘sine’ and a ‘pulse’, within one chain, and we
would want let them have the same frequency, it could be by inserting a ‘shared_out’ on
the frequency of the ‘sine’, and a ‘shared_in’ on that of the ‘pulse’. Now, when playing
this chain the ‘value’ of the ‘shared_out’ will be the frequency of both units.

The range sliders on both shared_out and shared_in can be used to map the value to
your liking. For example, if I would set the range of ‘shared_out’ to 2-10000, and that of
‘shared_in’ to 4-20000, the frequency of the pulse would effectively become 1 octave
higher than that of the sine (note that the parameter ranges of all ‘freq’ parameters are
on an exponential scale). The ‘clipMode’ parameter can be used to decide what to do
with out-of-range values, and ‘curve’ and ‘invert’ can be used to modify the mapping
relationship even further.

sine shared_out

shared_inpulse

freq

id 0
freq

signal flow

Working with WFSCollider : More about UMaps : Shared values

 74

Another thing that could be done is coupling the ‘shared_in’ to another parameter with a
different range. This may happen even within a single unit, as long as the ‘shared_out’
comes before the ‘shared_in’. In that case the set range of the ‘shared_in’ is mapped to
that of the ‘shared_out’. If we would do this for example with the ‘amp’ of a ‘sine’ unit, it
creates a direct relationship between the frequency and the amplitude of the sine. With
the default settings this would result in a sine wave that gets louder when it’s frequency
rises; where a 2Hz freq corresponds with a 0.0 amp, and a 20kHz freq with a 1.0 amp.

So a shared value can be converted from any range to any other range. It can also be
used as an input of UMaps, and it’s value itself can also be an UMap. The following
example shows a pulse oscillator on a point source, of which the frequency is modulated
by a lfo_sine which at the same time controls the ‘x’ position of the source.

signal flow

sine

shared_out

shared_in

freq

id 0
amp

signal flow

pulse

wfsSource

shared_out

lfo_sine

shared_in

expand

freq
value

id 0

x
point

= audio
= control

bus 0

Working with WFSCollider : More about UMaps : Shared points

 75

The second way of creating a shared value is via the ‘shared_value’ Udef. This allows a
dedicated unit in the UChain which only purpose is to create a shared value. The unit has
no audio inputs or outputs. A typical use for this unit is when the shared value is used by
many units further in the chain, where it could be convenient to have the source value
somewhere easy to access. A ‘shared_value’ Udef can switch between various types of
values, each matching a commonly used value range. This is merely for convenience, as
the ‘shared_in’ UMaps further in the chain will always map the value to the desired range
for the parameter they are attached to. An example of a use case of ‘shared_value’
would be the following, where one frequency value is used to drive 10 sine oscillators,
each of them with a different lag time (smoothing time for value change).

Shared points

A similar system exists for shared points. They have their own ‘id’ system (also 0-99),
which doesn’t overlap with the shared value id’s. Shared points can be created with the
‘shared_point_out’ UMap (‘shared_io’ UMapDef category) or a ‘shared_point’ unit
(‘shared_io’ Udef category), and can be retrieved with the ‘shared_point_in’ UMap.

Shared points work the same way as shared values. A point can be shared over multiple
units, and there is a special category of UMapDefs for converting these points to single
values. The example below creates a random trajectory for a wfs point source, and at
the same time measures the speed of the movement to modulate the amplitude of the
source signal. In this case the sound gets louder when it is moving faster.

signal flow

sine

shared_value

lag_line

shared_in

lfo_pulse

freq

value

value

id 0

10 X

Working with WFSCollider : More about UMaps : Shared points

 76

Shared points can be used for many ways of coupling the position of sources to sound
parameter changes. They can also be used to manipulate positions of multiple sources
within a chain, via various UMaps from the ‘point_filter’ and ‘point_utility’ categories.

sine

wfsSource

shared_point

point_speed

shared_point_in

shared_point_in

amp

random_trajectory
point

point

value

id 0

= audio
= control

signal flow

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 77

Appendix A:
Udef and UMapDef reference

Udefs
Udefs are definition files for Units. They can be found in the Udefs window, and dragged
into the Chain window from there.

distortion

bitCrusher
Introduces quantization noise to a signal by downsampling and bit-rate rounding
rate: fraction of the original sampling rate. If fs == 44100; rate == 0.25 means fs

becomes 11025
bits: virtual number of bits (1-24), can be fractional

clip
The clip Udef can clip the incoming signal in various ways, including a softness area

where the signal is distorted to create less harsh clipping curves.
scale: a scaling ratio applied to the input signal
offset: a DC offset added to the scaled input signal
clip: clip amplitude level (0-1)
clipMode: the type of clipping applied (0-3)
 - 0: softClip; normal clipping with softclip area
 - 1: sineClip; normal clipping with a sinusoidial/s-curve softclip area
 - 2: fold; the signal is mirrored between the clipping borders
 - 3: wrap; the signal is wrapped around (modulo / %) the clipping borders
 - 4: excess; inverse/center cipping - only the signal outside the clipping area is kept
clipSoftness: amount of softening (0-1). This can be applied to any of the modes. Mode

0 (softClip) applies softening through non-linear distortion. Modes 1-4 apply
softening through a sine function

makeUp: amount of automatic make-up gain added to compensate for the lost signal
amplitude (0-1)

cutoff: frequency of a 2-pole high-cut filter applied after the clipping stage

tanhDistort
Distorts the sound via a hyperbolic tangent function.
inGain: input gain (dB).
outGain: output gain (dB).

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 78

dynamics

limiter
A lookahead transparent limiter.
limit: in dB.
lookAhead: lookahead time in seconds. The signal will be delayed by this amount of

time, to give the limiter the chance to eliminate peaks from it. Lower lookahead
times will result in faster response, but also more side-effects. lookAhead is an 'init'
parameter (recognized by the "(i)" in the UChain editor), which means changed
values only become effective when the event is started the next time.

noiseGate

A noise gate.
thresh: threshold in dB
att: attack time
hold: hold time
rel: release time
hysteresis: hysteresis applied to threshold (0-1). A hysteresis value 1 (maximum) will

make the gate never close agian after opening.

peakCompressor
A compressor that uses the peak values in the amplitude as reference.
thresh: in dB.
ratio: ratio of the reduced level to the original level.
knee: the size of the knee in dB over and under the threshold. 0 is equal to no knee.
att: attack. The time it takes to follow an attack.
rel: release. The time it takes to follow a decay.
makeUp: make-up gain.

rmsCompressor
An rms-compressor. The mean value is taken over a range of 40 samples.
thresh: in dB.
ratio: ratio of the reduced level to the original level.
knee: the size of the knee in dB over and under the threshold. 0 is equal to no knee.
att: attack. The time it takes to follow an attack.
rel: release. The time it takes to follow a decay.
makeUp: make-up gain.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 79

effect

convolution
A realtime convolution udef, that uses partioned convolution, useful for creating

reverbs. This udef requires soundfiles in a special format, usually with a .partconv
extension. These files can be created via the gui interface in the 'operations' menu;
convert ir file (converts an existing impulse response audio file) and generate
danstowell (creates a new random impulse response based on an algorithm by Dan
Stowell. Convolution currently supports only mono impulse responses. For
multichannel use you need to create multiple convolution units in your chain.

file: a PartConvBuffer object; points to a .partconv file on disk.
wet: wet (processed sound) level
dry: dry level

delay

time: the length of the delay.
timeScale: the number of seconds by which 'time' is multiplied. This value can not be

changed during playback.
dry: level of the dry signal.
amp: level of the delayed signal.
lag: smoothing time applied to change of delay time, use to prevent clicks during

change of delay time.

freeverb
a simple reverb.
mix: wet/dry mix (0-1)
room: room size (0-1)
damp: damp (0-1) (0 means no damping)

freqShift
freqShift implements single sideband amplitude modulation, also known as frequency

shifting, but not to be confused with pitch shifting. Frequency shifting moves all the
components of a signal by a fixed amount but does not preserve the original
harmonic relationships.

freq: the amount of shifting (Hz)
phase: phase of the freq shift (radians)

magFreeze
An FFT-based (spectral) Udef that is able to freeze the magnitude of an incoming audio

signal. The freeze parameter (named 'hold') can be modulated. There is also the
option to convolve the signal with noise, effectively randomizing the phase
information.

fftSize: (512, 1024, 2048 or 4096) the window size of the FFT. Smaller windows result
in faster response but more side effects

hold: (0-1/false-true) freeze magnitudes when true/1
amp: amplitude of output signal
noise: the amount of convolved noise signal
seed: random seed of the noise

pitchShift
A time domain granular pitch shifter. Grains have a triangular amplitude envelope and

an overlap of 4:1.
semitones: the number of semitones to shift the pitch with.
pitchDisp: the maximum random deviation of the pitch.
timeDisp: a random offset from 0 to the number of seconds set with timeDisp that is

added to the delay of the grain.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 80

ringMod
A ringmodulator that modulates the soundfile with a sine oscillator, a pink noise

generator and/or a second sound file.
sine: level of the sine oscillator.
freq: frequency of the sine oscillator.
noise: level of the pink noise generator.
input: level of the input on the 1st audio bus.
mix: balance between the original and ringmodulated sound.

tremolo
Applies a tremolo to the amplitude of the input sound.
speed: number of tremolo's per second.
amount: sets the minimum and maximum of the tremolo effect.
smooth: smoothen the modulator signal; 0 means square wave, 1 means sine wave,

and everything in between.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 81

eq

fullEQ
This is a filter with a lowshelf filter, 3 parametric filters and a hihgshelf filter.
Clicking the [edit] button in UChainGUI opens the EQ Edit window. You can set the filter

by dragging in the window, setting the values in combination with the popup menu
or choosing from the presets. The eq algorithm (EQdef) is the same as that of the
global Unit lib EQ (UGlobalEQ), and it shares presets with it.

eq: an UEQ object, holding all settings for the eq.
numChannels: number of channels (*).

(*) only the following numbers of channels are allowed:
1,2,3,4,5,6,7,8,10,12,16,24,32

simpleEQ
This is a filter with a lowshelf filter, 1 parametric filter and a hihgshelf filter.
Clicking the [edit] button in UChainGUI opens the EQ Edit window. You can set the filter

by dragging in the window, setting the values in combination with the popup menu
or choosing from the presets.

lowMidHi: an UEQ object, holding all settings for the eq.

tiltEQ
Combined High Shelf and Low Shelf filter. Default settings mimic the Tonelux TILT eq

response.
tilt: amount of tilt (in dBs). Positive numbers increase high frequencies.
center: center frequency (default 650)
rs: the reciprocal of S. Shell boost/cut slope for both shelving filters (default 2)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 82

filter

allPass
An all-pass filter based on a cubic interpolated delay line.
freq: frequency.
decayTime: decay time in seconds
dry: level of dry (unprocessed) signal

bandPass
A band-pass filter
freq: center frequency.
bw: the bandwidth in octaves between -3 dB frequencies.

bandStop
A band-stop filter
freq: center frequency.
bw: the bandwidth in octaves between -3 dB frequencies.

combFilter
A comb filter.
freq: frequency.
decayTime: decay time in seconds
dry: level of dry (unprocessed) signal

cutFilter
This is a combination of a low cut and a high cut filter. Both filters are cascaded

Butterworth filters, and order is settable between 2nd and 8th.
freq: cutoff frequency for a low cut and a high cut filter.
order: sets the order (steepness) of both filters. The orders are:
 0: off
 1: 2nd order (12dB/octave)
 2 (default): 4th order (24dB/octave)
 3: 6th order (36dB/octave)
 4: 8th order (48dB/octave)
lag: smoothing time for the freq parameter.
mode: operating mode;
 low_high (default): combination of low and high cut filters
 low: only low cut
 high: only high cut

formlet
An FOF-like formant filter.
freq: frequency.
attackTime: attack time in seconds
decayTime: decay time in seconds
dry: level of unprocessed sound

furseDistanceFilter
** if a furseDistanceFilter is used in combination with a wfsDynamicPoint or

wfsStaticPoint in a chain, the next time the score is opened it will be removed and
replaced by a 'distanceFilter' setting in on the panner unit **

The furseDistanceFilter is a filter that applies distance filtering according to a formula
by Richard W. Furse (http://www.muse.demon.co.uk/vspace/model.html):

cutoff = 100000 / distance
where cutoff is Hz and distance is in metres.
point: a Point from which the distance to the center of the room (0,0) is determined
amount: strength of the effect. A cubed multiplier for the distance. 0 means no

filtering, 1 means normal, 2 means the distance in the formula is multiplied by 8
(2**3).

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 83

highPass
A resonant high-pass filter
freq: cutoff frequency.
rq: the reciprocal of Q. bandwidth / cutoffFreq

highShelf
High Shelf filter
freq: cutoff frequency.
rs: the reciprocal of S. Shell boost/cut slope
db: boost/cut the center frequency (in dBs).

klank
A bank of resonator filters.
range: the minimum and maximum frequency
exponential: distribution of frequencies: 0: linear, 1: exponential
variation: amount of random variation. 0: no variation, 0.5: linear distribution, 1: full

random.
amp: range of random amplitudes
ringTime: range of random ring times. Can not be modulated.
seed: random seed
n: number of oscillators

leakDC
Removes DC offset from signal.
cutFreq: frequencies below the cutFreq (Hz) will be reduced or removed. A lower

cutFreq will make the DC offset removal less effective, a higher cutFreq will result
in better offset removal but also in audible loss of bass frequencies in the sound

lowPass

A resonant low-pass filter
freq: cutoff frequency.
rq: the reciprocal of Q. bandwidth / cutoffFreq

lowShelf
Low Shelf filter
freq: cutoff frequency.
rs: the reciprocal of S. Shell boost/cut slope
db: boost/cut the center frequency (in dBs).

median
A median filter, effectively removing spikes from incoming values by calculating the

median value of a number of samples (length).
length: length of the median window
amount: mix between original signal and filtered signal (0-1)
residue: (boolean) if true the unit will output the difference between the original input

signal and the output signal.

moogVCF
A Robert Moog style low-pass filter, modulated with an LFO
freq: cutoff frequencies between which the modulation takes place.
modSpeed: speed of modulation (cycles per second).
modShape: shape of LFO; 0: square wave, 1: sine wave.
res: resonance of the filter (0-1)

peak
Parametric equalizer
freq: cutoff frequency.
rq: the reciprocal of Q. bandwidth / cutoffFreq
db: boost/cut the center frequency (in dBs).

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 84

io

output
Sends sounds from the previous units in the UChain to hardware output busses.
WFSCollider users: This sends only to the outputs of the master server. To send to

individual speakers on the WFS system, use wfsIndex instead. To send output "the
official way" only to the outputs of the master audio interface, use the
wfsMasterOut Udef instead (and set "toServers" to false if you really want the
analog outputs of the master interface)

bus: the channels are sent out starting with this bus.
numChannels: number of channels (*).

outputWithSubwoofer
Sends sounds from the previous units in the UChain to hardware output busses.
Send also the another output for subwoofer mix.
Note to WFSCollider users: This sends only to the outputs of the master server. To

send to individual speakers on the WFS system, use wfsIndex instead. To send
output "the official way" only to the outputs of the master audio interface, use the
wfsMasterOut Udef instead (and set "toServers" to false if you really want the
analog outputs of the master interface)

bus: the channels are sent out starting with this bus.
numChannels: number of channels (*).

roundPanOutput
Sends sounds from the previous units in the UChain to hardware output busses, using a

panning algorithm for clockwise circular speaker setups.
bus: the channels are sent out starting with this bus.
point: the position of the source (0@0: center, positive x is left, positive y is front)
dbRollOff: number of dB's amplitude rolloff per distance doubling
speakerRadius: the distance of the virtual microphones from the center of the room, in

meters. When 0, no inter-speaker delays are applied (only a distance-dependant
doppler delay). Default value is 0.19, which is okay for normal speaker setups.
Optimum value may differ per setup.

orientation: the speaker index of the front. 0.5 (default) means that the front position
is in between the first and second speaker (normal for stereo and quad setups).
This value can also be modulated to rotate the whole spatial image.

numChannels: number of speakers (*)

soundIn
Read sound from a hardware audio input.
WFSCollider users: This unit will only get sound input on the master server. To send

the sound to the rendering servers, use a \wfsMasterOut unit, and a new UChain
starting with a \wfsServerIn.

bus: the bus that you want to use to read audio from. Starts counting from 0; 0 means
the first input of your audio device.

numChannels: number of channels (*).

(*) only the following numbers of channels are allowed:
1,2,3,4,5,6,7,8,10,12,16,24,32

stereoOutput
Sends sounds from the previous units in the UChain to hardware output busses, using a

panning algorithm for stereo panning
bus: the channels are sent out starting with this bus.
point: the position of the source (0@0: center, positive x is left, positive y is front -

although the difference between front and back is not audible in this algorithm)
dbRollOff: number of dB's amplitude rolloff per distance doubling
speakerRadius: the distance of the virtual microphones from the center of the room

(i.e. half the distance between the speakers), in meters. When 0, no inter-speaker

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 85

delays are applied (only a distance-dependant doppler delay). Default value is 0.3,
which is optimal for normal speaker setups. For headphone, use 0.1.

lag: a lag time applied on all parameters

noise

brownNoise
A brownian noise generator. Generates noise whose spectrum falls off in power by 6 dB

per octave.
http://en.wikipedia.org/wiki/Brownian_noise
amp: amplitude (0-1) of the noise
seed: random seed (positive whole number). The same seed will always result in

exactly the same noise on any computer. If you want decorrelated noise from
multiple sources, change the seed on each source to a different number.

crackle

A noise generator based on a chaotic function.
chaosParam: value between 1 and 2; higher values produce more crackling
amp: amplitude (0-1) of the noise
seed: random seed (positive whole number). The same seed will always result in

exactly the same noise on any computer. If you want decorrelated noise from
multiple sources, change the seed on each source to a different number.

dust

A random impulse generator. Generates impulses of random amplitude (positive and
negative) with random time intervals in between.

density: the average amount of impulses per second
amp: maximum amplitude (0-1) of the pulses
seed: random seed (positive whole number). The same seed will always result in

exactly the signal on any computer. If you want decorrelated noise from multiple
sources, change the seed on each source to a different number.

grayNoise

Generates noise which results from flipping random bits in a word. This type of noise
has a high RMS level relative to its peak to peak level. The spectrum is emphasized
towards lower frequencies.

amp: amplitude (0-1) of the noise
seed: random seed (positive whole number). The same seed will always result in

exactly the same noise on any computer. If you want decorrelated noise from
multiple sources, change the seed on each source to a different number.

lfNoise

A sample-and-hold noise generator. Generates random values at frequency rate.
freq: frequency (2-20000Hz)
amp: amplitude (0-1) of the noise
type: the type of noise:
 0: step or sample-and-hold noise; hard jumps at each value change
 1: linear interpolated noise
 2: cubic interpolated noise
 3: clip noise
 - settings in between these types are also possible, effectively crossfading between

them.
seed: random seed (positive whole number). The same seed will always result in

exactly the same noise on any computer. If you want decorrelated noise from
multiple sources, change the seed on each source to a different number.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 86

pinkNoise
A pink noise generator. Generates noise whose spectrum falls off in power by 3 dB per

octave. This gives equal power over the span of each octave. This version gives 8
octaves of pink noise.

http://en.wikipedia.org/wiki/Pink_noise
amp: amplitude (0-1) of the noise
seed: random seed (positive whole number). The same seed will always result in

exactly the same noise on any computer. If you want decorrelated noise from
multiple sources, change the seed on each source to a different number.

whiteNoise

A white noise generator. Generates noise whose spectrum has equal power at all
frequencies.

http://en.wikipedia.org/wiki/White_noise
amp: amplitude (0-1) of the noise
seed: random seed (positive whole number). The same seed will always result in

exactly the same noise on any computer. If you want decorrelated noise from
multiple sources, change the seed on each source to a different number.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 87

oscillator

blip
Band Limited ImPulse generator. All harmonics have equal amplitude. This is the

equivalent of 'buzz' in MusicN languages.
freq: frequency (Hz)
numharm: number of harmonics (1-...)
amp: amplitude (0-1)

formant
A formant generator. Generates a set of harmonics around a formant frequency at a

given fundamental frequency.
freq: frequency (Hz)
fromant: frequency of the formant (Hz)
bw: bandwidth of the formant as multiplier of the freq
amp: amplitude (0-1)

impulse
A non-bandlimited impulse generator. Outputs single sample impulses.
freq: frequency (Hz)
scale: a multiplier for the frequency (if scale is 0, only a single impulse is produced)
numSamples: width of the impulse in number of samples (1-100)
amp: amplitude (0-1)

pulse
A band-limited pulse wave generator.
http://en.wikipedia.org/wiki/Sawtooth_wave
freq: frequency (Hz)
width: relative width (0-1) of the pulse. 0.5 means a square wave.
amp: amplitude (0-1)

saw
A band-limited sawtooth wave generator.
http://en.wikipedia.org/wiki/Sawtooth_wave
freq: frequency (Hz)
amp: amplitude (0-1)

sine
A sine wave oscillator.
http://en.wikipedia.org/wiki/Sine_wave
freq: frequency (Hz)
phase: phase (-pi - pi)
amp: amplitude (0-1)

sync_saw
A synced saw wave generator.
http://en.wikipedia.org/wiki/Oscillator_sync
syncFreq: fundamental frequency (Hz)
sawFreq: frequency of synced saw - prefferably > syncFreq (Hz)
amp: amplitude (0-1)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 88

shared_io

shared_buffer
** this Udef should be used in conjunction with 'shared_buffer_in' UMaps **
The 'shared_buffer' Udef creates a unit that is able to share a (soundfile) buffer or

UMap with other units further in the chain. The 'shared_buffer' unit needs to before
the units that use it in the order of the chain. To retreive the value in an other unit
use the 'shared_buffer_in' UMapDef, and make sure the 'id' setting is the same on
both. The buffer will always be mono (for multichannel audiofiles only the first
channel will be loaded).

soundFile: a soundfile object of which the buffer will be shared. Note: the 'rate' and
'loop' settings of the soundfile are ignored, and can be set separately in the
corresponding shared_buffer_in UMaps.

id: the id (0-99) by which the buffer can be retreived by a 'shared_buffer_in' UMap. In
the GUI this will show up as a colored box, which can be dragged and dropped onto
the receiving unit.

shared_point

** this Udef should be used in conjunction with 'shared_point_in' UMap **
The shared_point Udef creates an unit that is able to share point information with other

units used further in the chain. This is useful when multiple units or unit parameters
need to use the same point information, or derrive things from it. The shared_point
would always need to come first in the order of the chain; it sends the point data to
a bus. To retreive the data in another unit use the 'shared_in_point' UMapDef, and
make sure the 'id' setting is the same on both. This will only work _within_ a single
chain.

point: the point to be shared (can be an UMap)
id: the id (0-99) by which the point can be retreived by 'shared_point_in'

shared_value
** this Udef should be used in conjunction with 'shared_in' UMaps **
The 'shared_value' Udef creates a unit that is able to share a value or UMap with other

units used further in the chain. The 'shared_value' unit would always need to be
first in the order of the chain; it sends the value to a bus to the other units. To
retreive the value in an other unit use the 'shared_in' UMapDef, and make sure the
'id' setting is the same on both. The value can be set in 6 different formats: value
(0-1), freq (2-20000), amp (0-1, curved for amplitude use), trigger (a trigger
signal), boolean (true/false) and range (0-1). The range type produces two shared
values from the low and high value of the range. The 'shared_in' UMapDef will
automatically map the value to the range of the parameter it is connected to, which
means it is possible to use for example the 'freq' value of this unit to influence the
'amp' value of another unit. The shared_value itself does not output any sound, it
only sends the value. All this will only work _within_ a single chain.

value: the value to share (can be UMap, not available for 'range' type)
range: the range of the value to be shared (not available for 'trigger' and 'boolean'

types, in case of 'range' type this becomes the actual output values)
id: the id (0-99) by which the value can be retreived by a 'shared_in' UMap
type: the type of parameter (\value, \freq, \amp, \trigger, \boolean, \range)
lo_id / hi_id: id's of the lo and hi value in case of type 'range'

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 89

soundFile

bufSoundFile
A soundfile player. This plays soundfiles of any duration, with any (*) number of

channels, by loading the whole file into the memory. Use this typically for shorter
(less than apx 2 minutes) audiofiles. For longer files it is advised to use
\diskSoundFile instead

soundFile: a BufSndFile object, a region of an existig soundfile url on your hard drive.
The object knows the duration and file path of the soundfile, and can be set to clip
off the start and end of the file.

 - start: region startoffset (samples or seconds)
 - end: end of the region (samples or seconds)
 - loop: loop mode on or off (can be changed during playback)
 - rate: playback rate (semitones or ratio)
level: playback level (amplitude of the soundfile)

(*) only the following numbers of channels are allowed:
1,2,3,4,5,6,7,8,10,12,16,24,32

diskSoundFile
A soundfile player. This plays soundfiles of any duration, with any (*) number of

channels, by loading the whole file into the memory. Use this typically for longer
(over apx 2 minutes) audiofiles. For shorter files you can also use \bufSoundFile.

soundFile: a DiskSndFile object, a region of an existig soundfile url on your hard drive.
The object knows the duration and file path of the soundfile, and can be set to clip
off the start and end of the file.

 - start: region startoffset (samples or seconds)
 - end: end of the region (samples or seconds) (**)
 - loop: loop mode on or off (***)
 - rate: playback rate (semitones or ratio)
level: playback level (amplitude of the soundfile)

(*) only the following numbers of channels are allowed:
1,2,3,4,5,6,7,8,10,12,16,24,32

grainSoundFile
A granular soundfile player. This will play tiny fragments of the soundfile with optional

random dispersion and distribution.
soundFile: a MonoBufSndFile object, a region of an existig soundfile url on your hard

drive. The object knows the duration and file path of the soundfile, and can be set
to clip off the start and end of the file.

 - start: region startoffset (samples or seconds)
 - end: end of the region (samples or seconds)
 - loop: loop mode on or off (can be changed during playback)
 - rate: playback rate (semitones or ratio)
If the file has multiple channels, only the first one will be used
pos: range of position in the file between 0 (start) and 1 (end)
density: the average number of grains per second
timeVar: time variation factor (0-4). 0 means no variation, 4 means times between

grains can be within (1/4) and 4 times the original duration
rateVar: ratio variation in number of octaves
overlap: average number of overlapping grains. The duration of the grains is change to

match this.
pan: the pan position range. This is only active if numChannels > 1
seed: random seed
level: playback level (amplitude of the soundfile)
numChannels: number of output channels

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 90

loopSoundFile
loops a soundfile buffer, with settable crossfade time and optional random variation of

loop start and duration.
loopStart: (range) minimum and maximum start position of the loop (0-1).
loopDur: (range) minimum and maximum duration of the loop (0-1).
The duration of the whole soundfile is mapped from 0 to 1 in loopStart and loopDur.

The actual start position and duration are randomly chosen every time the loop
starts again.

crossfade: the crossfade time in seconds. The loop engine has 4 voices, which means
that if the loop duration in seconds is less than 1/4 of the crossfade time there may
be audible clicks.

seed: random seed. The same value for seed gives the exact same signal on every
machine, every time the unit is played.

soundFile: a BufSndFile object, a region of an existig soundfile url on your hard drive.
The object knows the duration and file path of the soundfile, and can be set to clip
off the start and end of the file.

 - start: region startoffset (samples or seconds)
 - end: end of the region (samples or seconds)
 - loop: loop mode on or off (can be changed during playback)
 - rate: playback rate (semitones or ratio)
rateScale: a scale value for the playback rate (can be modulated)
level: playback level (amplitude of the soundfile)

only the following numbers of channels are allowed:
1,2,3,4,5,6,7,8,10,12,16,24,32

trigSoundFile
plays a soundfile buffer upon a trigger (can be UMap), with settable crossfade time and

start position.
trigger: the trigger that makes the playback jump to the start position
crossfade: crossfade time applied when trigger is initiated (max. voices: 4)
pos: position in the soundfile (0-1)
reverse: if true, the soundfile is played back in reverse. Position is also reversed in this

case
soundFile: a BufSndFile object, a region of an existig soundfile url on your hard drive.

The object knows the duration and file path of the soundfile, and can be set to clip
off the start and end of the file.

 - start: region startoffset (samples or seconds)
 - end: end of the region (samples or seconds)
 - loop: loop mode on or off (can be changed during playback, crossfade time does

not apply here)
 - rate: playback rate (semitones or ratio)
rateScale: a scale value for the playback rate (can be modulated)
level: playback level (amplitude of the soundfile)

only the following numbers of channels are allowed:
1,2,3,4,5,6,7,8,10,12,16,24,32

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 91

synthesis

babblingbrook_jmc
The famous James Mc.Cartney babbling brook. based on code posted to sc-users 2007-

04-07 by james mccartney
amp: amplitude (0-1)
seed: random seed (positive whole number). The same seed will always result in

exactly the same signal on any computer.

blipTest
A test signal generator, including a "blip" oscillator and pink noise generator,

modulated with a pulse lfo. This generator is equal to the "blip" audioType in
WFSCollider version 1.

rate: frequency (Hz) of pulse lfo
freq: frequency (Hz) of blip oscillator
noiseLevel: amplitude (0-1) of pink noise generator
blipLevel: amplitude (0-1) of blip oscillator

cymbalic_mcld
A cymbal sound by Dan Stowell. Based on the example at

http://www.mcld.co.uk/cymbalsynthesis/ published 2008 by Dan Stowell
decay: decay time (s) of the cymbal
ratio: scale factor for the frequencies (0.25-4)
amp: amplitude (0-1)
seed: random seed (positive whole number). The same seed will always result in

exactly the same signal on any computer.

default
The SuperCollider default sound.
freq: frequency (Hz) of the bell
amp: amplitude (0-1)
seed: random seed (positive whole number). The same seed will always result in

exactly the same signal on any computer.

gendy
A GENDY generator (by Nick Collins). This is implementation of the dynamic stochastic

synthesis generator conceived by Iannis Xenakis and described in Formalized Music
(1992, Stuyvesant, NY: Pendragon Press) chapter 9 (pp 246-254) and chapters 13
and 14 (pp 289-322).

ampdist: Choice of probability distribution for the next perturbation of the amplitude of
a control point. The distributions are (adapted from the GENDYN program in
Formalized Music):

 0: LINEAR.
 1: CAUCHY.
 2: LOGIST.
 3: HYPERBCOS.
 4: ARCSINE.
 5: EXPON.
The "SINUS" distribution, which needs time-varying input adparam and ddparam, is left

out as it would not work in this udef.

durdist: Choice of distribution for the perturbation of the current inter control point

duration.
adparam: A parameter for the shape of the amplitude probability distribution
ddparam: A parameter for the shape of the duration probability distribution
freq: Minimum and maximum allowed frequencies of oscillation for the Gendy1

oscillator, so gives the smallest and largest period the duration is allowed to take
on.

ampscale: Multiplier for the distribution's delta value for amplitude. An ampscale of 1.0
allows the full range of -1 to 1 for a change of amplitude.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 92

durscale: Multiplier for the distribution's delta value for duration. An ampscale of 1.0
allows the full range of -1 to 1 for a change of duration.

initCPs: Initialise the number of control points in the memory. Xenakis specifies 12.
There would be this number of control points per cycle of the oscillator, though the
oscillator's period will constantly change due to the duration distribution.

knum: Current number of utilised control points (can be modulated).
amp: the amplitude of the signal (0-1).
seed: random seed (positive whole number). The same seed will always result in

exactly the same signal on any computer. If you want different signals for different
UChains that play at the same moment, use different seeds.

grainSine

A granular synthesis generator. This will play tiny segments ("grains") of sine waves
with optional random dispersion and distribution.

range: the minimum and maximum frequency in between which each grain is randomly
chosen

pos: range of position in the file between 0 (start) and 1 (end)
density: the average number of grains per second
timeVar: time variation factor (0-4). 0 means no variation, 4 means times between

grains can be within (1/4) and 4 times the original duration
overlap: average number of overlapping grains. The duration of the grains is change to

match this.
pan: the pan position range. This is only active if numChannels > 1
amp: the overall amplitude of the generator
seed: random seed
numChannels: number of output channels

klang
A bank of sine oscillators.
range: the minimum and maximum frequency
exponential: distribution of frequencies: 0: linear, 1: exponential
variation: amount of random variation. 0: no variation, 0.5: linear distribution, 1: full

random.
amp: range of random amplitudes
phase: range of random phases
seed: random seed
n: number of oscillators

sos_bell
A simple bell sound by Dan Stowell. based on a sound-on-sound 'synth secrets' tutorial.

Adapted to sound indefinitely.
freq: frequency (Hz) of the bell
decay: decay time (s) of the bell.
amp: amplitude (0-1)
seed: random seed (positive whole number). The same seed will always result in

exactly the same signal on any computer.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 93

utility

crossfade
Equal power crossfade between two sources.
crossfade: amount of left/right
numChannels: number of channels

duplicateChannel
duplicates a single channel to multiple outputs.
numChannels: number of output channels (*).

(*) only the following numbers of channels are allowed:
1,2,3,4,5,6,7,8,10,12,16,24,32

envelope_amp
An amplitude envelope.
env: an Env. It should have levels between 0 and 1, which will be mapped with

according to the \amp ControlSpec.

gain
A simple gain stage. Can set a gain in dB and inverse phase.
gain: added gain (dB)
inverse: inverse phase (false/true)
numChannels: number of channels

mixer
mixes multiple channels together to a single one by summing
amp0 .. ampN: amplitude of each input signal
numChannels: number of channels (*).

(*) only the following numbers of channels are allowed:
1,2,3,4,5,6,7,8,10,12,16,24,32

multiply
A simple amplitude multiplication Udef.
mul: amplitude multiplication value (can be UMap)

splay
divides an arbitrary number of inputs over an arbitrary number of outputs via equal

power intensity panning. Can also be used to manipulate fixed arrays of channels
(i.e. rotate, leak etc.).

spread: the amount of spreading; 0 means all inputs go to first output, 1 (default)
means all outputs will be used

width: the width sets how many outputs are used for each input. A cosine window is
applied here.

center: rotates the outputs; 0 means the first input goes to the first output, 1 or -1
means the first input goes to the middle output.

numChannels: number of input channels (*).
numOutputs: number of output channels (1-8)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 94

wfs_experimental

wfsDynamicDirectional
This udef creates a dynamic point source on the WFS system, with a directional

radiation pattern. The position of the source can be changed in realtime (dynamic).
*This feature of WFSCollider is currently under development, please test and report

your findings*
point: This point represents the absolute location of the point source.
direction: the direction of the radiation pattern
radiation: defines the radiation pattern in 4 values; [o,d,q,n]
 - o: omnidirectional component (0-1)
 - d: dipole component (0-1)
 - q: quadrupole component (0-1)
 - n: pole multiplier (1-8)
 the graphic interface shows a directional amplitude plot of the currently set values
quality: (i) (\normal or \better) setting for the interpolation quality of the delays.
 normal = linear interpolation
 better = cubic interpolation
Cubic interpolation uses about 50% more cpu.
latencyComp: (i) cancels the delay caused bu the distance of the source. 0 = no

compensation, 1 = full compensation. This can reduce the doppler shift for moving
sources, and can ensure synchronicity between this source and other sources.

dbRollOff: decrease in level due to a doubling of the distance. In nature this is -6 dB in
free field conditions, and might be -3 dB in extremely reverberant rooms.

maxAmpRadius: defines the radius of the circular area in the centre where the level will
always be 0 dB. The dbRollOff starts where this area ends. So the larger the area,
the louder the sounds outside of it.

wfs_io

wfsMasterOut
Output audio from the master audio interface of the system (if there is one).
Using this Udef in a UChain will cause the whole UChain to be played on the master

computer instead of the servers.
On the Game of Life WFS system it can be used either to send audio digitally from the

master computer to the servers (for which there are 8 buses available – i.e. one
ADAT cable), or to the analog outputs of the master audio interface (for example to
send audio signals in sync with the WFS system to other speakers or headphones).

bus: number of a hardware output (starting at 0)
toServers: if true (default), the output is to the digital inputs of the servers. If not

selected, it is sent to analog outputs.
numChannels: number of channels (1-8)

wfsServerIn
Input audio sent digitally from the master computer on the server.
Using this Udef in your UChain will make the UChain play only on the servers. It is

meant to use together with another UChain that holds a wfsMasterOut. Together,
these can make a bridge between the master computer and the servers, typically
needed for feeding live audio into the system and distributing it over the servers.
On the Game of Life WFS system there are 8 buses available for this.

bus: number of the hardware input bus (0-7).
numChannels: number of channels (1-8)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : Udefs

 95

wfs_panner

wfsIndex
This udef can send sound to an individual speaker on the WFS system. The index of the

speaker can be changed in realtime (dynamic) when attaching an UMap, and will be
static when no UMap is attached.

index: the number of the speaker, starting at 0.
gain: the output level (dB).

wfsSource
This udef creates a virtual source on the WFS system. It can be a point source or a

plane wave source. The position of the source can static or changing over time
(dynamic). The unit changes internally depending on the type of the source. If the
point is set normally (default) the unit is in 'static' mode, meaning that the point
can not be moved during playback. Changes to the point will not be audible until
the unit (and chain) is stopped and started again. When applying an UMap on the
point (location) of the source, the source becomes 'dynamic', which will add an
extra 'quality' parameter, and make the source able to move over time. The reason
for the difference between static and dynamic is in optimization; a 'static' source
takes considerably less CPU power than a 'dynamic' source. If you want to move
the source in realtime by hand, try using (for example) a 'point_lag' UMap on the
point argument. This will change the umap into 'dynamic' mode, allowing it to move
during playback.

point: This point represents the absolute location of the point source, or the center
position of a plane wave (the point on the line nearest to the center of the room).
When point becomes a UMap, the unit goes into 'dynamic' mode, except when the
UMap outputs single values (for example: 'random_point').

type: (i) \point or \plane
quality: (i) (\normal or \better) setting for the interpolation quality of the delays (only

in 'dynamic' mode)
 normal = linear interpolation
 better = cubic interpolation
 Cubic interpolation uses about 50% more cpu.
latencyComp: (i) cancels the delay caused bu the distance of the source. 0 = no

compensation, 1 = full compensation. This can reduce the doppler shift for moving
sources, and can ensure synchronicity between this source and other sources.

dbRollOff: decrease in level due to a doubling of the distance. In nature this is -6 dB in
free field conditions, and might be -3 dB in extremely reverberant rooms.

maxAmpRadius: defines the radius of the circular area in the centre where the level will
always be 0 dB (maximum). The dbRollOff starts where this area ends. So the
larger the area, the louder the sounds outside of it.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UnitRacks

 96

UnitRacks
UnitRacks are presets made of several Udefs.

wfs

wfsPathPlayerTrack

A wfsDynamicPoint with a ‘trajectory’ UMap applied.

wfsSimpleReverb
A combination of wfsPoint, 4 times simpleReverb and wfsStaticPlane, and

wfsDynamicPoint. Place a bufSoundFile or diskSoundFile as first Unit in the Chain
window and then add wfsSimpleReverb.

This UnitRack is connected in such a way that the controls of the simpleReverb are
connected to wfsPoint. I this way the placement is taken into consideration by the
reverbs. Each reverb is sent to a wfsStaticPlane in such a way that the plane waves
together form 4 'walls' of reverberation.

The direct out (or dry) signal is made by wfsDynamicPoint. In wfsDynamicPoint
pointFromBus is selected and it gets its coordinates from wfsPoint, like the
reverberators.

I this way you can add reverberation to your sounds in a way that makes sense with
WFS.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 97

UMapDefs
UMapDefs are definition files for UMaps, which can be used to modulate or control parameters of
Units. They can be found in the Udefs window, and dragged into the Chain window from there, on
top of a parameter name.

automation

envelope
An envelope generator.
env: an Env or EnvM object, containing time and level values.
timeScale: a scale for the time/duration of the Env (can be modulated)
loop: loopmode (0: off, 1: loop, 2: alternate)
delay: delay time before starting the env
trigger: a trigger that restarts the env

envelope_rel
An envelope generator of which the duration is automatically scaled to that of the

event.
env: an Env or EnvM object, containing time and level values.
timeScale: if timeScale is 1, the duration of the envelope will become exactly that of

the event, lower and higher timeScales result in a shorter and longer envelope
durations.

loop: loopmode (0: off, 1: loop, 2: alternate)
delay: delay time before starting the env (not affected by timeScale)
trigger: a trigger that restarts the env

line
An line / ramp generator.
a: start value
b: end value
curve: a curve value for the line. A 0 (zero) curve creates a linear line, a positive curve

value makes the line tend towards the start value, and v.v.
duration: duration of the line in seconds (can be modulated)
loop: loopmode (0: off, 1: loop, 2: alternate)
delay: delay time before the line starts
trigger: a trigger that restarts the line

line_rel
An line generator of which the duration is automatically scaled to that of the event.
a: start value
b: end value
curve: a curve value for the line. A 0 (zero) curve creates a linear line, a positive curve

value makes the line tend towards the low value, and v.v.
timeScale: if timeScale is 1, the duration of the line will become exactly that of the

event, lower and higher timeScales result in a shorter and longer envelope
durations.

loop: loopmode (0: off, 1: loop, 2: alternate)
delay: delay time before the line starts
trigger: a trigger that restarts the line

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 98

control

envir_get
Creates an UMap that gets the value of an environment variable in SuperCollider. The

value will only be used if it exists, and if it is valid input.
value: the actual output value (this will change when the variable changes, but can also

be changed manually)
active: if true, the UMap will listen to the specified variable and update it regularly. A

message with the key and value range is posted in the post window when active
becomes true. Hitting cmd-. will make the UMap stop updating it's value, but
whenever the Unit is started, it will re-activate.

key: the name of the variable (as String). If the key is not specified (default), it will
automatically be set to the name of the parameter to which the UMap is connected
when 'active' is set to true.

speed: the speed by which the value is checked and updated, in times per second
mapped: if true, the value will be mapped from 0-1 to the output range of the UMap, if

false (default) the value will be used directly.

global_control
Creates an UMap that listens to a control in UGlobalControl
value: the actual output value (this will change when the variable changes, but can also

be changed manually)
active: if true, the UMap will listen to the specified global control and update it

whenever it changes. If a non-existing key is used, it will be added to
UGlobalControl automatically when 'active' == true.

controlKey: the name of the globalControl (a Symbol)

osc_set
Creates an UMap that listens to OSC messages. Works similar to all 'midi_xxx'

UMapDefs.
value: the actual output value (this will change when a the OSC message is received,

but can also be changed manually)
active: if true, the UMap will listen to the specified OSC message. Hitting cmd-. will

make the UMap stop listening, but whenever the Unit is started, it will re-activate.
The OSC port is always that of the SuperCollider or WFSCollider application,
normally 57120 but that may change sometimes. The current port number is
posted together with the message name and range in the post window when active
is set to true.

message: the OSC message (String) to which the UMap is listening. This will be set to
the name of the parameter the UMap is connected to if not specified (default). The
actual message the UMap listens to is always preceeded by a "/" char.

mapped: if true, the received values will be mapped from 0-1 to the range of the
output value. If false (default) no mapping is applied and values will be set directly.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 99

convert

deg_rad
Creates an UMap for converting radians to degrees, to be used on any UMap with an

angle setting in radians (-pi to pi)
deg: amount of degrees (-180-180)

expand
Creates an UMap that expands certain multi-value args into single values. This UMap

patches it stored values and UMaps directly to the correct inputs. Use it for example
to control the x and y values of a Point separately, or to make EQ's change over
time.

Argnames depend on the type of Spec. The following Specs have dedicated argnames:
RangeSpec:
lo: low / first value
hi: high / second value
PointSpec:
x: x value (default range -200m to 200m)
y: y value (default range -200m to 200m)
EQSpec:
<band_name>_<param_name>: an arg with the correct spec for the correct

parameter
... etc
ArraySpec:
value<n>: the value at index <n>
all arg ranges are mapped to that of the parameter to which the UMap is connected.
This UMapDef replaces the former 'lo_hi' and 'x_y' UMapDefs, which are now

automatically re-routed to 'expand'.

linear
gives an arg that doesn't have a linear ArgSpec a linear warp in the same range. For

example; \freq args usually have non-linear warps (\exp in this case), as well as
\amp args.

value: the value to be mapped (0-1)

map
Maps a value between 0 and 1 to a specific range, with user-settable warp (linear,

exponential etc.). The warp setting overrides that of the input spec. It can also be
used to covert time or integers to a specific range for modulation.

value: the value to be mapped (0-1)
min: minimum map output (value == 0)
max: maxmum map output (value == 1)
warp: warp type
 -1: auto (default - warp type of input Spec)
 0: \step
 1: \lin
 2: \exp
 3: \cos
 4: \sin
 5: \curve
 6: \amp
curve: the curve amount when warp is set to \curve.

note_freq
Creates an UMap for converting diatonic mini-note values to a frequency, in semitones

where 69 == 440Hz.
note: a midi note value
round: rounding factor (0 - 12)
detune: detune amount in cents (-50 - 50)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 100

filter

delay
This UMapDef creates an UMap for delaying value changes. The delay time itself can

also be modulated.
value: the value (or UMap) to be delayed
time: the length of the delay.
timeScale: the number of seconds by which 'time' is multiplied. This value can not be

changed during playback.
lag: smoothing time applied to change of delay time, use to prevent sudden jumps

during change of delay time.

lag
An UMap that slows down value changes over time. It is implemented as a one-pole

low-pass filter, with different settings for up- and downward movement.
value: the value upon which the lag is applied (this can be another UMap as well)
timeUp: the time it takes to move upwards to within 0.01% towards a new value
timeDown: the time it takes to move downwards to within 0.01% towards a new value
order: (1-4) order of the lag, a higher order produces a smoother lag curve. The UMap

cascades four lag filters, and the order parameter sets how many of them are
actually used.

lag_line

An UMap that slows down value changes over time. It does this by creating a line
between the old and new value

value: the value upon which the lag is applied (this can be another UMap as well)
time: the time it takes to move to the new value
curve: a curve value for the line. 0 means linear, a negative curve makes the value

move faster in the beginning, a positive curve makes it move faster at the end.

lag_lpf
An UMap that slows down value changes over time. It is implemented as a two-pole

low-pass filter. Please note that changing the 'time' variable during playback may
cause the filter to become temporarily unstable.

value: the value upon which the lag is applied (this can be another UMap as well)
time: the time it takes to move to within 0.01% towards a new value

median
An UMap that applies a median filter, effectively removing spikes from incoming values

by calculating the median value of a number of samples (length).
value: the value upon which the median is applied (this can be another UMap as well)
length: length of the median window
amount: mix between original signal and filtered signal (0-1)

peak
Creates an UMap for following the highest or lowest peak from the incoming value (or

UMap)
value: the input value (or UMap)
decay: (0-1) a decay parameter for the (low)peak detection. 0 means no decay, 1

means infinite decay
direction: (-1 - 1) if 1 (default) the UMap will follow output the peak / maximum value,

if -1 the UMap will follow the bottom / minimum value. Values in between will
interpolate between these two.

ringz

Creates an UMap that routes an input value through a ringing filter with attack and
decay and adds the result to the original value. This causes oscillations to happen
at value changes.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 101

value: the value upon which the lag is applied (this can be another UMap as well)
freq: the frequency of the filter. Rapid changes of this value may cause the filter to be

temporarily unstable
attackTime: the attack time of the
decayTime: the decay time of the ringing filter
amp: amplitude of the ringing filter

slew
An UMap that limits the speed of value changes
value: the value upon which the lag is applied (this can be another UMap as well)
timeUp: the time it takes to move upwards across the whole range
timeDown: the time it takes to move downwards across the whole range

slope
An UMap that differentiates its input, returning the amount of change per control cycle.
value: the value upon which the lag is applied (this can be another UMap as well)
abs: if true the UMap returns the absolute slope, if false it returns negative and positive

slope
range: the range to which the output values are mapped

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 102

function

function
Creates an UMap that evaluates a SuperCollider function every time the UChain is

started
function: the function. The result of the function should be a value between 0 and 1
value: the result of the function (for display only)

random_point
Creates an UMap that generates a new random point value each time it is started. This

UMap can also be used on 'init' mode parameters.
center: (Point) the center of the rectangle within which a random point can be

generated.
radius: (Point) x and y radius of the rectangle within which the random point is

generated.
value: the output point (can only be changed by the UMap itself)

random_time
Creates an UMap that generates a new random time value each time it is started. This

UMap can also be used on 'init' mode parameters. It can only be used for time
(SMPTESpec) parameters.

min: minimum time
max: maximum time
value: the output value (can only be changed by the UMap itself)

random_value
Creates an UMap that generates a new random value each time it is started. Typical

use for this would be at the 'seed' parameter of any random-generator unit. This
UMap can also be used on 'init' mode parameters.

range: the range in between which the value will be created
value: the output value (can only be changed by the UMap itself)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 103

input

amp_follow
Creates an UMap that listens to an audio bus from a previous unit in the chain, and

follow it's amplitude.
fromRange: the amplitude range to be used as output
toRange: the range to which the output is scaled
attackTime: the attack time of the amplitude follower
releaseTime: the release time of the amplitude follower
invert: if true, the fromRange is inverted (i.e. low values become high and v.v.)
curve: a curvature value for toRange. If curve == 0, the range is linear.
clipMode: can be one of the following modes:
 0 - 'clip' (default): clip values outside fromRange
 1 - 'fold': fold values outside fromRange
 2 - 'wrap': wrap around values outside fromRange
 3 - 'none': no clipping applied (values can go outside toRange)
clipSoftness: softens the edges of 'clip' and 'fold' modes.

map_audio
Creates an UMap that listens to an audio bus from a previous unit in the chain and

converts it to a control signal.
fromRange: the input range to listen to (-1 to 1)
toRange: the range to which the output is scaled
curve: a curvature value for toRange. If curve == 0, the range is linear.
invert: if true, the fromRange is inverted (i.e. low values become high and v.v.)
lag: lagging filter time for value changes
clipMode: can be one of the following modes:
 0 - 'clip' (default): clip values outside fromRange
 1 - 'fold': fold values outside fromRange
 2 - 'wrap': wrap around values outside fromRange
 3 - 'none': no clipping applied (values can go outside toRange)
clipSoftness: softens the edges of 'clip' and 'fold' modes (0-1).

onsets
Creates an UMap that listens to an audio bus from a previous unit in the chain and

detects the beginning of notes/drumbeats/etc..
threshold: the detection threshold, typically between 0 and 1
odftype: chooses which onset detection function is used. In many cases the default will

be fine. The following choices are available;
 \power
 generally OK, good for percussive input, and also very efficient
 \magsum
 generally OK, good for percussive input, and also very efficient
 \complex
 performs generally very well, but more CPU-intensive
 \rcomplex
 performs generally very well, and slightly more efficient than \complex
 \phase
 generally good, especially for tonal input, medium efficiency
 \wphase
 generally very good, especially for tonal input, medium efficiency
 \mkl
 generally very good, medium efficiency, pretty different from the other methods
relaxtime: specifies the time (in seconds) for the normalisation to "forget" about a

recent onset. If you find too much re-triggering (e.g. as a note dies away unevenly)
then you might wish to increase this value.

floor: floor is a lower limit, connected to the idea of how quiet the sound is expected to
get without becoming indistinguishable from noise. For some cleanly-recorded
classical music with wide dynamic variations, I found it helpful to go down as far as
0.000001.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 104

mingap: specifies a minimum gap (in FFT frames) between onset detections, a brute-
force way to prevent too many doubled detections.

medianspan: specifies the size (in FFT frames) of the median window used for
smoothing the detection function before triggering.

range: the UMap's output range. Triggers will cause jumps from the minimum to the
maximum of this range.

fftsize: the size of the fft buffer used for the analisys. A smaller buffer will result in
quicker but less accurate detection.

pitch_follow

Creates an UMap that listens to an audio bus from a previous unit in the chain, and
follow it's pitch.

ampTreshold: an amplitude threshold above which pitch detection is performed
median: number of frames of built-in median filter
pitchRange: the range of pitches to detect (will never go out of range)
toRange: the range to which the pitchRange is scaled
invert: if true, the toRange is inverted (i.e. low values become high and v.v.)
curve: a curvature value for toRange. If curve == 0, the range is linear.
hasPitchID: shared value id for a signal indicating the 'clarity' of the pitch. This value

can be obtained with a 'shared_in' UMap further in the chain, using the same id.
The signal varies from 0 to 1, indicating the purity of the tone, where 0 is no tone
and 1 is maximum tone.

rec_soundBuf

This UMapDef can be used to replace a regular BufSndFile (soundFile) on
\bufSoundFile, \grainSoundFile, \loopSoundFile and \trigSoundFile units. It creates
a single-channel (mono) buffer that can record audio from previous units in the
chain, in realtime. The buffer is passed on to the unit for immediate playback. Note
that the buffer is always empty at the start, and will be deleted after stopping the
chain.

buffer: the buffer; In the editor the duration of the buffer can be set in seconds.
recLevel: level of recording input (0 means silence)
preLevel: level of the existing material in the buffer, to mix with the input
run: turns the recording on and off
loop: if enabled, the recording will loop (i.e. start at the beginning of the buffer when

the end is reached), if off the recording will end when the end of the buffer is
reached.

trigger: a trigger to start or reset the recording at the beginning of the buffer
playbackRate: the rate for playback (passed through to the playback unit)
playbackLoop: enables/disables looped playback (passed through to the playback unit)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 105

midi

midi_bend
Creates an UMap that listens to MIDI pitchbend messages. Works similar to all

'midi_xxx' UMapDefs.
value: the actual output value (this will change when a midi message is received, but

can also be changed manually)
active: if true, the UMap will listen to the specified MIDI message. Hitting cmd-. will

make the UMap stop listening, but whenever the Unit is started, it will re-activate.
The MIDI client will be inited when the first midi_xxx UMap is made 'active'.

channel: the MIDI channel to listen to. 0-15 or nil (any channel).
learn: if learn is true, the 'channel' value will be changed according to any incoming

MIDI pitchbend message.
fromRange: the used range of the midi message
toRange: the output range of the UMap
invert: if true, the input range is inverted (i.e. low values become high and v.v.)
curve: a curvature value for the mapped range. If curve == 0, the range is linear.
clipMode: can be one of the following modes (Symbol):
 'ignore': ignore values outside fromRange
 'clip' (default): clip values outside fromRange
 'fold': fold values outside fromRange
 'wrap': wrap around values outside fromRange
 'none': no clipping applied (values can go outside toRange)
clipSoftness: softens the edges of 'clip' and 'fold' modes.

midi_cc
Creates an UMap that listens to MIDI control messages. Works similar to all 'midi_xxx'

UMapDefs.
value: the actual output value (this will change when a midi message is received, but

can also be changed manually)
active: if true, the UMap will listen to the specified MIDI message. Hitting cmd-. will

make the UMap stop listening, but whenever the Unit is started, it will re-activate.
The MIDI client will be inited when the first midi_xxx UMap is made 'active'.

cc: the control number (0-127) to listen to
channel: the MIDI channel to listen to. 0-15 or nil (any channel).
learn: if learn is true, the 'channel' and 'cc' values will be changed according to any

incoming MIDI control message, as long as 'learn' is true.
fromRange: the used range of the midi message
toRange: the output range of the UMap
invert: if true, the input range is inverted (i.e. low values become high and v.v.)
curve: a curvature value for the mapped range. If curve == 0, the range is linear.
clipMode: can be one of the following modes (Symbol):
 'ignore': ignore values outside fromRange
 'clip' (default): clip values outside fromRange
 'fold': fold values outside fromRange
 'wrap': wrap around values outside fromRange
 'none': no clipping applied (values can go outside toRange)
clipSoftness: softens the edges of 'clip' and 'fold' modes.

midi_noteOn
Creates an UMap that listens to MIDI note on messages. Works similar to all 'midi_xxx'

UMapDefs.
value: the actual output value (this will change when a midi message is received, but

can also be changed manually)
active: if true, the UMap will listen to the specified MIDI message. Hitting cmd-. will

make the UMap stop listening, but whenever the Unit is started, it will re-activate.
The MIDI client will be inited when the first midi_xxx UMap is made 'active'.

channel: the MIDI channel to listen to. 0-15 or nil (any channel).
learn: if learn is true, the 'channel' value will be changed according to any incoming

MIDI note on message, as long as 'learn' is true.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 106

fromRange: the used range of the midi message
toRange: the output range of the UMap
invert: if true, the input range is inverted (i.e. low values become high and v.v.)
curve: a curvature value for the mapped range. If curve == 0, the range is linear.
clipMode: can be one of the following modes (Symbol):
 'ignore': ignore values outside fromRange
 'clip' (default): clip values outside fromRange
 'fold': fold values outside fromRange
 'wrap': wrap around values outside fromRange
 'none': no clipping applied (values can go outside toRange)
clipSoftness: softens the edges of 'clip' and 'fold' modes.
The 'value' arg range is mapped to that of the parameter to which the UMap is

connected.

midi_noteOn_freq
Creates an UMap that listens to MIDI note on messages. It implements diatonic scaling

meant for use with \freq parameters. Works similar to all 'midi_xxx' UMapDefs.
value: the actual output value (this will change when a midi message is received, but

can also be changed manually)
active: if true, the UMap will listen to the specified MIDI message. Hitting cmd-. will

make the UMap stop listening, but whenever the Unit is started, it will re-activate.
The MIDI client will be inited when the first midi_xxx UMap is made 'active'.

channel: the MIDI channel to listen to. 0-15 or nil (any channel).
learn: if learn is true, the 'channel' value will be changed according to any incoming

MIDI note on message, as long as 'learn' is true.
range: the used range of input note numbers. Notes outside this range will be ignored.
a: the frequency of "A3" (note number 69)
transpose: amount of transposition in semitones
scale: scaling of semitones around (transposed) note number 69
invert: if true, the range is inverted around note number 69

midi_note_gate
Creates an UMap that listens to MIDI velocity in note messages of a specific note. It

sets the value to the velocity of a note on message, and to 0 for note-off messages.
Works similar to all 'midi_xxx' UMapDefs.

value: the actual output value (this will change when a midi message is received, but
can also be changed manually)

active: if true, the UMap will listen to the specified MIDI message. Hitting cmd-. will
make the UMap stop listening, but whenever the Unit is started, it will re-activate.
The MIDI client will be inited when the first midi_xxx UMap is made 'active'.

nn: the note number to listen to
channel: the MIDI channel to listen to. 0-15 or nil (any channel).
learn: if learn is true, the 'channel' and 'nn' values will be changed according to any

incoming MIDI note on message, as long as 'learn' is true.
fromRange: the used range of the midi message
toRange: the output range of the UMap
invert: if true, the input range is inverted (i.e. low values become high and v.v.)
curve: a curvature value for the mapped range. If curve == 0, the range is linear.
clipMode: can be one of the following modes (Symbol):
 'ignore': ignore values outside fromRange
 'clip' (default): clip values outside fromRange
 'fold': fold values outside fromRange
 'wrap': wrap around values outside fromRange
 'none': no clipping applied (values can go outside toRange)
clipSoftness: softens the edges of 'clip' and 'fold' modes.

midi_touch
Creates an UMap that listens to MIDI aftertouch (channel pressure) messages. Works

similar to all 'midi_xxx' UMapDefs.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 107

value: the actual output value (this will change when a midi message is received, but
can also be changed manually)

active: if true, the UMap will listen to the specified MIDI message. Hitting cmd-. will
make the UMap stop listening, but whenever the Unit is started, it will re-activate.
The MIDI client will be inited when the first midi_xxx UMap is made 'active'.

channel: the MIDI channel to listen to. 0-15 or nil (any channel).
learn: if learn is true, the 'channel' value will be changed according to any incoming

MIDI aftertouch message.
fromRange: the used range of the midi message
toRange: the output range of the UMap
invert: if true, the input range is inverted (i.e. low values become high and v.v.)
curve: a curvature value for the mapped range. If curve == 0, the range is linear.
clipMode: can be one of the following modes (Symbol):
 'ignore': ignore values outside fromRange
 'clip' (default): clip values outside fromRange
 'fold': fold values outside fromRange
 'wrap': wrap around values outside fromRange
 'none': no clipping applied (values can go outside toRange)
clipSoftness: softens the edges of 'clip' and 'fold' modes.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 108

modulation

gendy
A GENDY generator (by Nick Collins). This is implementation of the dynamic stochastic

synthesis generator conceived by Iannis Xenakis and described in Formalized Music
(1992, Stuyvesant, NY: Pendragon Press) chapter 9 (pp 246-254) and chapters 13
and 14 (pp 289-322).

ampdist: Choice of probability distribution for the next perturbation of the amplitude of
a control point. The distributions are (adapted from the GENDYN program in
Formalized Music):

 0: LINEAR.
 1: CAUCHY.
 2: LOGIST.
 3: HYPERBCOS.
 4: ARCSINE.
 5: EXPON.
The "SINUS" distribution, which needs time-varying input adparam and ddparam, is left

out as it would not work in this udef.
durdist: Choice of distribution for the perturbation of the current inter control point

duration.
adparam: A parameter for the shape of the amplitude probability distribution
ddparam: A parameter for the shape of the duration probability distribution
freq: Minimum and maximum allowed frequencies of oscillation for the Gendy1

oscillator, so gives the smallest and largest period the duration is allowed to take
on.

ampscale: Multiplier for the distribution's delta value for amplitude. An ampscale of 1.0
allows the full range of -1 to 1 for a change of amplitude.

durscale: Multiplier for the distribution's delta value for duration. An ampscale of 1.0
allows the full range of -1 to 1 for a change of duration.

initCPs: Initialise the number of control points in the memory. Xenakis specifies 12.
There would be this number of control points per cycle of the oscillator, though the
oscillator's period will constantly change due to the duration distribution.

knum: Current number of utilised control points (can be modulated).
seed: random seed (positive whole number). The same seed will always result in

exactly the same signal on any computer. If you want different signals for different
UChains that play at the same moment, use different seeds.

range: the output value range

lfo_noise
Creates an UMap with a low frequency noise oscillator.
freq: the frequency of the noise generator
type: the type of noise:
 0: step or sample-and-hold noise; hard jumps at each value change
 1: linear interpolated noise
 2: cubic interpolated noise
seed: random seed (positive whole number). The same seed will always result in

exactly the signal on any computer.
range: the output range

lfo_pulse
Creates an UMap with a low frequency pulse wave oscillator.
freq: the frequency of the pulse wave
phase: the initial phase (0-1) of the pulse wave
width: the width of the pulse. 0.5 (default) creates a square wave
range: the output range

lfo_saw
Creates an UMap with a low frequency saw/triangle wave oscillator.
freq: the frequency of the pulse wave
phase: the initial phase (0-1) of the pulse wave

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 109

width: the width of the sawtooth;
 0 creates a saw wave: |\|\
 0.5 creates a traingular wave: /\/\
 1 creates an reversed saw wave: /|/|
range: the output range

lfo_sine
Creates an UMap with a low frequency sine wave oscillator.
freq: the frequency of the sine wave
phase: (-pi - pi) the start phase of the sine wave (can be modulated)
range: the output range

lfo_step_noise
Creates an UMap for generating step noise. Random values are chosen on time

intervals.
time: the time between the steps in seconds, minimum and maximum
type: the type of transitions; step or line:
 0: step or sample-and-hold noise; hard jumps at each value change
 1: linear interpolation
seed: random seed (positive whole number). The same seed will always result in

exactly the signal on any computer.
range: the output range

phasor
Creates an UMap with a looping linear ramp, that can be reset via a trigger.
speed: the speed of the ramp
up: if true (default) the ramp moves upwards, if false the ramp moves downwards
startPos: the start value of the ramp
range: the output range
trigger: if set, the ramp will jump to 'startPos'

sequencer_16
Creates an UMap that can sequence a number (maximum 16) of values (or UMaps)

over time. If you need to sequence <= values, it is more efficient to use
\sequencer_8.

speed: number of steps per second
reverse: if true, move backwards through the steps
range: the range (0-15) of used steps.
smooth: smoothening parameter (0: hard steps, 1: linear interpolation)
value0 - value15: the values of the steps (can be UMaps)

sequencer_8
Creates an UMap that can sequence a number (maximum 8) of values (or UMaps) over

time. If you need to sequence > 8 values, use \sequencer_16 instead.
speed: number of steps per second
reverse: if true, move backwards through the steps
range: the range (0-7) of used steps.
smooth: smoothening parameter (0: hard steps, 1: linear interpolation)
value0 - value7: the values of the steps (can be UMaps)

vibrato
Creates an UMap for vibrato modulation. The typical use would be on a 'freq'

parameter, but it will work for any type.
value: the fundamental value around which the vibrato takes place
freq: the frequency (rate) of the vibrato
depth: size of vibrato deviation around the fundamental, as a proportion of the

fundamental. 0.02 = 2% of the fundamental.
delay: delay before vibrato is established in seconds (a singer tends to attack a note

and then stabilise with vibrato, for instance)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 110

onset: transition time in seconds from no vibrato to full vibrato after the initial delay
time

rateVar: noise on the freq, expressed as a proportion of the rate; can change once per
cycle of vibrato

depthVar: noise on the depth of modulation, expressed as a proportion of the depth;
can change once per cycle of vibrato. The noise affects independently the up and
the down part of vibrato shape within a cycle

lag: a lag time for the fundamental value
seed: random seed (positive whole number). The same seed will always result in

exactly the same random variation on any computer.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 111

operator

add
Creates an UMap adding (+) two values together.
value: the value to add to
add: the amount to add
factor: multiplier for add (negative value results in subtraction0

divide
Creates an UMap for division (/) of two values.
value: the value
divide: the divider
negative: divide by negative value
factor: exponent of 10 to multiply the divider by

max
This UMap outputs the highest (maximum) out of two input values
a: the first value
b: the second value

min
This UMap outputs the lowest (minumum) out of two input values
a: the first value
b: the second value

multiply
Creates an UMap for multiplication (*) of two values.
value: the value
multiply: the multiplier
negative: multiply with negative value
factor: exponent of 10 to multiply the multiplier by

round
Creates an UMap for rounding off (quantizing) values. The output value will be the

nearest multiple of the 'round' value.
value: the value to be rounded
round: the value to round to

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 112

point_filter

delay_point
Creates an UMap for applying a delay to a point input. When the point is moving the

delayed point will always follow behind it.
point: the point to lag
time: the length of the delay.
timeScale: the number of seconds by which 'time' is multiplied. This value can not be

changed during playback.
lag: smoothing time applied to change of delay time, use to prevent sudden jumps

during change of delay time.

follow_point
Creates an UMap for applying speed and rotation limits to a point input.
point: the point to follow
maxSpeed: maximum speed in m/s
maxRotation: maximum rotation in deg/s

lag_point
Creates an UMap for applying a lagging filter to point input. It's main purpose is to

reduce unwanted doppler shift effects.
point: the point to lag
time: the time it will take for the point to travel to a new location
linear: if true the lag will be a linear (ramp), if false (default) the lag is applied using a

3th order filter. The latter will produce less unnatural doppler shift changes.

slew_point
Creates an UMap for applying a speed limit to point input.
point: the point to lag
maxSpeed: maximum speed in m/s

point_to_value

point_angle
Creates an UMap for converting the angle between two points (or point UMaps) to a

value range.
point1: the first point
point2: the second point
centerAngle: the reference angle (subtracted from the absolute angle)
fromRange: the angle range from which the output value will be calculated, divided by

pi
toRange: the value range to which the angle range will be mapped
invert: (boolean) if true the angle range will be inverted
clipMode: when the angle is outside the fromRange, the clipMode decides what

happens. The angle is "unwrapped" internally, so if the point would for example
spin multiple times it will go outside the clipping area.

 0 - 'clip': clip inside the value range
 1 - 'fold': fold/mirror inside the value range
 2 - 'wrap' (default): wrap around the value range
 3 - 'none': no clipping applied (values can go outside the value range)
clipSoftness: softens the edges of 'clip' and 'fold' modes (0-1).

point_axis
Creates an UMap for converting a point (or point UMap) to a single value, by projecting

it on a line. The line can be the x axis (default) or y axis, but via the 'rotate'
argument it can also be somewhere in between.

point: the point
which: the axis to project on

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 113

rotate: amount of rotation (to deviate from the axis)
fromRange: the range from which the output value will be calculated
toRange: the value range to which the range will be mapped
clipMode: when the value is outside the fromRange, the clipMode decides what happens
 0 - 'clip' (default): clip inside the value range
 1 - 'fold': fold/mirror inside the value range
 2 - 'wrap': wrap around the value range
 3 - 'none': no clipping applied (values can go outside the value range)
clipSoftness: softens the edges of 'clip' and 'fold' modes (0-1).

point_direction
Creates an UMap for getting the direction angle of a moving point.
point: the point
centerAngle: the reference angle (subtracted from the absolute angle)
fromRange: the angle range from which the output value will be calculated, divided by

pi
toRange: the value range to which the angle range will be mapped
invert: (boolean) if true the angle range will be inverted
clipMode: when the angle is outside the fromRange, the clipMode decides what

happens. The angle is "unwrapped" internally, so if the point would for example
spin multiple times it will go outside the clipping area.

 0 - 'clip': clip inside the value range
 1 - 'fold': fold/mirror inside the value range
 2 - 'wrap' (default): wrap around the value range
 3 - 'none': no clipping applied (values can go outside the value range)
clipSoftness: softens the edges of 'clip' and 'fold' modes (0-1).
lag: linear lag time for output

point_distance
Creates an UMap for converting the distance between two points (or point UMaps) to a

value range.
point1: the first point
point2: the second point
fromRange: the distance range from which the output value will be calculated
toRange: the value range to which the distance range will be mapped
invert: (boolean) if true the distance range will be inverted
clipMode: when the distance is outside the fromRange, the clipMode decides what

happens
 0 - 'clip' (default): clip inside the value range
 1 - 'fold': fold/mirror inside the value range
 2 - 'wrap': wrap around the value range
 3 - 'none': no clipping applied (values can go outside the value range)
clipSoftness: softens the edges of 'clip' and 'fold' modes (0-1).

point_in_rect
Creates an UMap for testing if a point is inside or outside a rectangle.
point: the point
center: the center of the rect area
radius: the radius of the rect area
inValue: the value to return when the point is inside the rect
outValue: the value to return when the point is outside the rect

point_speed
Creates an UMap for measuring the speed of a point (or point UMap) and convert it to a

value.
point: the point
fromRange: the speed range from which the output value will be calculated
toRange: the value range to which the speed range will be mapped
clipMode: when the speed is outside the fromRange, the clipMode decides what

happens

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 114

 0 - 'clip' (default): clip inside the value range
 1 - 'fold': fold/mirror inside the value range
 2 - 'wrap': wrap around the value range
 3 - 'none': no clipping applied (values can go outside the value range)
clipSoftness: softens the edges of 'clip' and 'fold' modes (0-1).

point_utility

clip_point
Creates an UMap for applying clipping, wrapping, folding (mirroring) and more on

points
point: the point to clip
center: the center of the clipping area
radius: the radius of the clipping area
clipMode: can be one of the following modes:
 0 - 'clip' (default): clip coordinates outside clipping area
 1 - 'fold': fold/mirror coordinates outside clipping area
 2 - 'wrap': wrap around coordinates outside clipping area
 3 - 'none': no clipping applied (values can go outside clipping area)
clipSoftness: softens the edges of 'clip' and 'fold' modes (0-1).

crossfade_point
Creates an UMap for crossfading between two points via linear interpolation. The points

can also be UMaps.
a: the first point
b: the second point
crossfade: (0-1) the crossfading position (a to b)

index_trajectory
Creates an UMap for indexing through 2D spatial trajectories. Via the 'index' value,

which can be another UMap, all positions on the course of the path can be reached.
The index scales between 0 and 1, the start and end positions of the trajectory. The
time information stored in the trajectory object is not used; the distance between
the breakpoints is used equally. This umap is intended for use on units with
PointSpec or WFSPointSpec based args.

index: a value between 0 and 1, referring to the start and end points of the path. If the
path is set to 'loop', the path is extended by adding the start point as last point.

trajectory: a WFSPathBuffer object. This object creates and points to a buffer with the
data of the trajectory. This buffer is either filled with data sent directly, or data read
from a .wfspath file (generated via the [write data] button in the GUI). Data from
file is usually more reliable than sending via network. Note that the 'delay' and
'rate' settings have no effect on the behaviour of this UMap.

addPoint: a point (or point UMap) can be added to the trajectory position, effectively
moving the trajectory as a whole.

mirror_point

Creates an UMap intended that mirrors a point across a line. This can be used for
example for creating early reflection positions.

point: the point to rotate (can be an UMap)
plane: the line/plane across which the point is mirrored.
absolute: if true, the point will only be mirrored when it is in front of the line, and thus

the mirrored point will always stay behind the line.

polar
Creates an UMap intended for use on modulatable point parameters. It converts the

point into a polar, with linear controls for rho and theta, which on their turn can be
used to assign other UMaps to.

rho: the rho value (distance from 0@0)
theta: the theta value (angle from 0@0)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 115

rho_theta

Creates an UMap intended for use on modulatable point parameters. It converts the
point into a polar, with linear controls for rho and theta, which on their turn can be
used to assign other UMaps to.

rho: the rho value (distance from 0@0)
theta: the theta value (angle from 0@0)

rotate_point
Creates an UMap intended that rotates and scales an input point.
point: the point to rotate (can be an UMap)
rotate: the amount of rotation in degrees (-pi - pi)
scale: a scale amount (0.25 - 4)

sample_and_hold_point
This UMap implements sample-and-hold process for points. Every time a trigger is

received the output point becomes the input point of that moment.
point: the point or point UMap to sample
trigger: the trigger
time: a linear lag time to move to the new point

scale_point
Creates an UMap for scaling and moving a point. The point can also be UMaps.
point: the first point
scale: a multiplier for x/y
move: a point to add to the point

select_8_point
Creates an UMap that can select one from 8 points.
index: the index of the point (0-7)
interpolation: interpolation type (0:step, 1:linear) // cubic: todo
point0 - point7: the values of the steps (can be UMaps)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 116

range

center_focus
Creates an UMap intended for use on modulatable range parameters. It converts the

range into three linear controls: center, focus and knee. If the center value is at
minimum or maximum, the low and high values of the range will be the same. The
focus parameter controls the behaviour of the range in between. If focus == 1
(maximum), the range values will be equal to center. If focus == 0, the range will
be [min,max] when the center value is halfway in between. The knee parameter
controls the smoothness of the transition via sine mapping.

center -> range
with focus == 0;
0 -> [0, 0]
0.25 -> [0, 0.5]
0.5 -> [0, 1]
0.75 -> [0.5, 1]
1 -> [1, 1]
with focus == 0.5;
0 -> [0, 0]
0.25 -> [0, 1/3]
0.5 -> [1/3, 2/3]
0.75 -> [2/3, 1]
1 -> [1, 1]
with focus == 1; (same as \center_range with range == 0)
0 -> [0, 0]
0.25 -> [0.25, 0.25]
0.5 -> [0.5, 0.5]
0.75 -> [0.75, 0.75]
1 -> [1, 1]
center: position above or below the center (-1 - 1)
focus: the width of the range (0-1)
knee: transition smoothness at point where lo or hi value starts changing

center_range
Creates an UMap intended for use on modulatable range parameters. It converts the

range into two linear controls: center and range, which on their turn can be used to
assign other UMaps to.

center: the center of the range
range: the width of the range (0-1)

value_to_range
Creates an UMap intended for use on modulatable range parameters. The UMap

derrives a value range by taking the peak and the lowest value from the input value
over time.

value: the input value (or UMap)
decay: (0-1) a decay parameter for the (low)peak detection. 0 means no decay, 1

means infinite decay

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 117

shared_io

shared_buffer_in
** this UMapDef should be used in conjunction with a 'shared_buffer' unit **
The shared_buffer_in UMapDef can receive a buffer pointer from a 'shared_buffer' unit

earlier in the chain. This way a single buffer can be played by multiple buffer-
playing units (i.e. bufSoundFile, grainSoundFile etc.).

id: the id (0-99) by which the point can be retreived from 'shared_buffer'
rate: the playback rate
loop: loop mode on/off for playback

shared_buffer_out
** this UMapDef should be used in conjunction with a 'shared_buffer_in' unit **
The 'shared_buffer_out' UMapDef creates a unit that is able to share a (soundfile)

buffer or UMap with other units further in the chain. The 'shared_buffer_out' unit
needs to before the units that use it in the order of the chain. To retreive the value
in an other unit use the 'shared_buffer_in' UMapDef, and make sure the 'id' setting
is the same on both. The buffer will always be mono (for multichannel audiofiles
only the first channel will be loaded).

id: the id (0-99) by which the buffer can be retreived by a 'shared_buffer_in' UMap. In
the GUI this will show up as a colored box, which can be dragged and dropped onto
the receiving unit.

shared_in

** this UMapDef should be used in conjunction with 'shared_out' **
The shared_in UMapDef can receive a value from UMaps used earlier in the chain. This

is useful when multiple units or unit parameters need to use the same information,
or derrive things from it. The shared_in would always need to come after a
'shared_out' in the order of the chain; it recieves the data from a bus. To send the
data use the 'shared_out' UMapDef in an other unit or parameter earlier in the
chain, and make sure the 'id' setting is the same on both. There can be multiple
'shared_in' UMaps with the same 'id' in one chain, which would all receive data from
the same 'shared_out'. 'shared_in' automatically maps the incoming value to the
range of the parameter it is connected to. I.e. if the 'shared_out' containse a
frequency value between 2 and 20000, and the 'shared_in' is connected to an
amplitude parameter, the value will be scaled from 2-20000 to 0-1, according to
the specs. This scaling can be influenced both with the 'range' parameter on
'shared_out' and the 'range', 'curve', 'invert' and 'clipMode' settings on 'shared_in'.
All this will only work _within_ a single chain.

id: the id (0-99) by which the value can be retreived from 'shared_out_point'
range: the range to map the received value to
curve: a curve setting into which the value can be wrapped
invert: (boolean) if true the range is inverted; high becomes low and v.v.
clipMode: if the 'range' on the corresponding 'shared_out' UMap is not full, the sent

value may go out of bounds. The clipMode on 'shared_in' defines how to deal witch
such values:

 0: clip; clip everything between the min and max of the 'range'
 1: fold; fold (mirror) values outside the range so that they fall into it
 2: wrap; wrap around at the borders of the range
 3: none; no clipping; values are allowed to go outside the 'range'
clipSoftness: an amount of softening applied to the edges of the range when in 'clip' or

'fold' mode

shared_out
** this UMapDef should be used in conjunction with 'shared_in' **
The shared_out UMapDef creates an UMap that is able to share a value with other

UMaps used further in the chain. This is useful when multiple units or unit
parameters need to use the same value, or derrive things from it. The shared_out
would always need to be first in the order of the chain; it sends the value to a bus.
To retreive the value in an other unit or parameter use the 'shared_in' UMapDef,

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 118

and make sure the 'id' setting is the same on both. The 'shared_in' UMapDef will
automatically map the value to the range of the parameter it is connected to, which
means it is possible to use for example the 'freq' value of one unit to influence the
'amp' value of another (or the same) unit. This will only work _within_ a single
chain.

value: the value to be shared (can be an UMap)
id: the id (0-99) by which the point can be retreived by 'shared_in'
range: the range of the value to be shared.

shared_point_in
** this UMapDef should be used in conjunction with 'shared_point_out' **
The shared_in_point UMapDef can receive point information from UMaps used earlier in

the chain. This is useful when multiple units or unit parameters need to use the
same point information, or derrive things from it. The shared_in_point would
always need to come after a 'shared_point_out' in the order of the chain; it recieves
the point data from a bus. To send the data in an other unit or parameter use the
'shared_point_out' UMapDef, and make sure the 'id' setting is the same on both.
There can be multiple 'shared_point_in' UMaps with the same 'id' in one chain,
which would all receive data from the same 'shared_out_point'. All this will only
work _within_ a single chain.

id: the id (0-99) by which the point can be retreived from 'shared_out_point'

shared_point_out
** this UMapDef should be used in conjunction with 'shared_point_in' **
The shared_point_out UMapDef creates an UMap that is able to share point information

with other UMaps used further in the chain. This is useful when multiple units or
unit parameters need to use the same point information, or derrive things from it.
The shared_point_out would always need to come first in the order of the chain; it
sends the point data to a bus. To retreive the data in an other unit or parameter
use the 'shared_in_point' UMapDef, and make sure the 'id' setting is the same on
both. This will only work _within_ a single chain.

point: the point to be shared (can be an UMap)
id: the id (0-99) by which the point can be retreived by 'shared_point_in'

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 119

trajectory

circle_trajectory
Creates an UMap for generating a circular or elliptical trajectory for modulatable point

parameters.
speed: frequency (cycles per second).
startAngle: starting angle of the path in degrees.
clockwise: select to turn clockwise, otherwise the path turns anti-clockwise.
center: the center of the circle (Point).
radius: x and y radius of the circle/ellipse (Point).

line_trajectory
Creates an UMap for generating a line trajectory between two points. The points can

also be UMaps.
a: the start point of the line
b: the end point of the line
curve: a curve value (x,y) for the line. A 0 (zero) curve creates a linear line, a positive

curve value makes the line tend towards the low value, and v.v.
easeIn: a positive value makes the movement start slow, a negative value makes it

start fast
easeOut: a positive value makes the movement end slow, a negative value makes it

end fast
duration: duration of the line in seconds (can be modulated)
loop: loopmode (0: off, 1: loop, 2: alternate)
delay: delay time before the line starts
trigger: a trigger that restarts the line

motion_trajectory
Creates an UMap for generating a motion based on speed and acceleration, contained

in a rectangular area.
startPoint: start point of the movement, can be changed over time
startSpeed: initial speed, can be changed over time to produce relative speed changes
acceleration: (in m/s^2) amount of acceleration over x and y axes
center: the center of the clipping area
radius: the radius of the clipping area
clipMode: can be one of the following modes:
 0 - 'clip': clip coordinates outside clipping area
 1 - 'fold' (default): fold/mirror coordinates outside clipping area - this produces a

typical hard wall bounce
 2 - 'wrap': wrap around coordinates outside clipping area
 3 - 'none': no clipping applied (values can go outside clipping area)
clipSoftness: softens the edges of 'clip' and 'fold' modes.
reset: jump to startPoint/startSpeed

random_trajectory
Creates an UMap for generating a random trajectory for modulatable point parameters.
speed: frequency by which new random positions are generated, in Hz.
center: (Point) the center of the rectangle within which a random path can be

generated.
radius: (Point) x and y radius of the rectangle within which the random path is

generated.
type: the type of noise used:
 0: step or sample-and-hold noise; hard jumps at each value change
 1: linear interpolated noise
 2: cubic interpolated noise
lag: a smoothing time for changes if 'type' == 0.
seed: Use this to generate a different random path. Paths with the same seed are

exactly the same.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 120

trajectory
A player for 2D spatial trajectories. The WFSPathGUI; an editor for trajectories, can be

called up via the [edit] button in the UChain window. This umap is intended for use
on units with PointSpec or WFSPointSpec based args.

trajectory: a WFSPathBuffer object. This object creates and points to a buffer with the
data of the trajectory. This buffer is either filled with data sent directly, or data read
from a .wfspath file (generated via the [write data] button in the GUI). Data from
file is usually more reliable than sending via network.

trigger: a trigger to (re)start the trajectory
addPoint: a point (or point UMap) can be added to the trajectory position, effectively

moving the trajectory as a whole.

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 121

trigger_test

direction_change
This UMap can switch between two values, depending on an incoming value. If the

value is changing upwards (getting higher) the result is 'up', if the value is changing
downwards it becomes 'down'. If the value doesn't change, the current state is
kept. All parameters can be UMaps.

value: the value to test (0-1)
upValue: the value (or UMap) to output when the value changes upwards
downValue: the value (or UMap) to output when the value changes downwards

greater_than
A comparator. This UMap can switch between two values, depending on two incoming

values; a and b. If a > b the UMap outputs trueValue, otherwise it outputs
falseValue. All values can be UMaps.

a: the first value
b: the second value
trueValue: the value (or UMap) to output when a > b
falseValue: the value (or UMap) to output when a <= b

in_range
This UMap can switch between two values, depending on an incoming value. If the

value is in between the lower and higher value of the range, the result is 'true',
otherwise it is 'false'. All parameters can be UMaps.

value: the value to test (0-1)
range: the range (explanation above)
trueValue: the value (or UMap) to output when the result is true
falseValue: the value (or UMap) to output when the result is false

logical
An UMap for applying logical operations upon two binary values.
a: the first value (boolean)
b: the second value (boolean)
mode: value (0-5) for type of operation
 0: 'and'; and/&& operation
 1: 'or'; or operation
 2: 'nand'; nand (not and) operation
 3: 'xor'; xor operation (or and nand)
 4: 'a'; return first value
 5: 'b'; return second value
trueValue: the value (or UMap) to output when the result is true
falseValue: the value (or UMap) to output when the result is false

schmidt
This UMap can switch between two values, depending on an incoming value. If the

value passes the upper range boundary, the output will become 'true'. If there-after
the value passes the lower range value, the output will become 'false'. The range
between the upper and lower value is known as "hysteresis". If the lower and upper
value of the range are the same, the UMap will behave as a simple treshold
comparator. All parameters can be UMaps.

value: the value to test (0-1)
range: the Schmidt range (explanation above)
trueValue: the value (or UMap) to output when the result is true
falseValue: the value (or UMap) to output when the result is false

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 122

trigger_to_value

pulse_counter
This UMapDef implements a pulse counter.
trigger: the trigger to be counted
reset: a trigger resets the count
max: the maximum value to be counted
step: the size of the steps (can be negative too)
startValue: the value from where the counting starts (default value before any pulse is

counted)
mode: there are three possible modes:
 \clip - clip the output to the max number
 \wrap - when the max number is reached, jump to zero
 \fold - after the max number is reached, count backwards, and when zero is

reached count forwards again
range: the values to which zero and max are mapped.

sample_and_hold
This UMap implements sample-and-hold process. Every time a trigger is received the

output value becomes the input value of that moment.
value: the value or UMap to sample
trigger: the trigger
time: a linear lag time to move to the new value

set_reset_ff
This UMap implements a flip-flop switch mechanism.
trigger: the set trigger
reset: the reset trigger
lag: a linear lag time between value1 and value2 in seconds
value1: the first value (or UMap)
value2: the second value (or UMap)

timer
This UMap measures the elapsed time between triggers. Every time a trigger is

received, the UMap will output the time between that and the previous trigger. The
value can be scaled from a within a time range to the output range of the UMap.

trigger: the trigger
minTime: minimum time, will be mapped to the lower value of 'range'
maxTime: maximum time, will be mapped to the higher value of 'range'.
range: the output range to scale the time values to. If minTime > maxTime the range

gets inverted.
curve: a curvature value for the mapped range. If curve == 0, the mapping is linear.
clipMode: can be one of the following modes:
 0 - 'clip' (default): clip / limit values outside range
 1 - 'fold': fold / mirror values outside range
 2 - 'wrap': wrap around / modulo values outside range
 3 - 'none': no clipping applied (values can go outside range)
clipSoftness: only used for 'clip' and 'fold' (0-1).

toggle_ff
This UMap implements a toggle flip-flop mechanism. Each time a trigger is received the

UMap switches to the other value.
trigger: the trigger
lag: a linear lag time between value1 and value2 in seconds
value1: the first value (or UMap)
value2: the second value (or UMap)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 123

trig_random
This UMap implements triggered random value generator. Every time a trigger is

received the output value a random value within the set 'range' of the UMap.
trigger: the trigger
range: the range of the value
time: a linear lag time to move to the new value

trig_select_16
Creates an UMap that can select one from 8 values via a trigger(or UMaps). When the

end is reached, it wraps around to the first value. If you need to select from > 8
values, use \trig_select_16 instead.

trigger: switch to next value
reset: return to first value
step: step size
reverse: if true, step backwards instead of forward
range: min and max index to choose from
lag: lag time between steps (linear lag)
value0 - value7: the values of the steps (can be UMaps)

trig_select_8
Creates an UMap that can select one from 8 values via a trigger(or UMaps). When the

end is reached, it wraps around to the first value. If you need to select from > 8
values, use \trig_select_16 instead.

trigger: switch to next value
reset: return to first value
step: step size
reverse: if true, step backwards instead of forward
range: min and max index to choose from
lag: lag time between steps (linear lag)
value0 - value7: the values of the steps (can be UMaps)

trigger_utility

dust
Creates an UMap for producing random single-frame impulses.
density: average number of impulses per second
range: the output range

impulse
Creates an UMap for producing single-frame impulses
freq: the frequency of the impulses wave
phase: the initial phase (0-1) of the pulse wave
range: the output range

pulse_divider
This UMap implements a pulse divider. The incoming trigger pulses are counted and

every 'division' times one is passed through.
trigger: the trigger
division: number of pulses to divide
offset: start offset for pulse division (0 means first trigger always gets through)
time: the time to hold the trigger. If a new trigger occurs within this time it is ignored.
range: the output range; a passed through trigger makes the output jump from the

range minimum to maximum.

trigger
This UMap implements a simple trigger signal with a certain duration. For convenience

also a linear rise/decay filter, so that users can use this UMap for simple envelope
creation

trigger: the trigger

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 124

time: trigger duration (if 0, it will be a single frame)
rise: a linear lag time before the value reaches it's maximum
decay: a linear lag time before the value reaches it's minimum after the trigger time

has ended
range: the value range (when triggered, the value moves from the lower to the upper

limit of the range)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 125

utility

clip_scale
Creates an UMap for scaling a value to another range, with clipping and wrapping

functionality.
value: the value upon which the scaling is applied (this can be another UMap as well)
fromRange: the used range of the input value
toRange: the range to map it to
invert: if true, the input range is inverted (i.e. low values become high and v.v.)
curve: a curvature value for the mapped range. If curve == 0, the range is linear.
clipMode: can be one of the following modes:
 0 - 'clip' (default): clip values outside fromRange
 1 - 'fold': fold values outside fromRange
 2 - 'wrap': wrap around values outside fromRange
 3 - 'none': no clipping applied (values can go outside toRange)
clipSoftness: only used for 'clip' and 'fold' (0-1).

crossfade
Creates an UMap for linear crossfading between two values (or other UMaps)
a: the first value
b: the second value
crossfade: (0-1) the crossfading position (a to b)

envelope_map
Creates an UMap for indexing an envelope.
index: the index (0-1, modulatable)
env: an Env or EnvM object, containing time and level values.

gate
This UMap implements a gating process. It allows a modulating input value to pass

when gate is on, otherwise holds last value.
value: the value or UMap to sample
gate: if true (on), the signal is passed through, if false the signal is kept at the last

value
the value arg range is mapped to that of the parameter to which the UMap is

connected.

poll
An UMap that posts incoming values in the 'post' window. The value itself is passed

through unchanged.
value: the value to be posted
trigger: a trigger causes the value to be posted
onChange: when true, the value will be posted whenever it changes (can result in

many posts)
speed: number of times per second to post the value automatically (default 0 - no

automatic posting).

select_16
Creates an UMap that can select one from 16 values (or UMaps). If you need to select

from <= 8 values, use \select_8 instead.
index: the index of the value (0-15)
smooth: smoothening parameter (0: hard steps, 1: linear interpolation)
value0 - value15: the values of the steps (can be UMaps)

select_8
Creates an UMap that can select one from 8 values (or UMaps). If you need to select

from > 8 values, use \select_16 instead.
index: the index of the value (0-7)
smooth: smoothening parameter (0: hard steps, 1: linear interpolation)
value0 - value7: the values of the steps (can be UMaps)

Working with WFSCollider : Appendix A:
Udef and UMapDef reference : UMapDefs

 126

Working with WFSCollider : Appendix B:
A walk through the helpfiles : Helpfiles

 127

Appendix B:
A walk through the helpfiles

Helpfiles
In the Help menu you can find a few help files. Look under getting started with
WFSCollider: here you will find the WFSCollider V2.0 Overview.

You can also get to these helpfiles by opening a SuperCollider window, (menu File > New
(Cmd-N)). Copy in this window the name of the helpfile, 'A WFSCollider tutorial' for
instance (without the single quotes), and select the whole text. Then go to menu Help >
SuperCollider Help (Cmd-D). In this case the window will show the results found. If you
copy for instance 'UChain' it will go directly to the help page.

If you want to stop a sound that was generated by code use menu Lang > Stop (Cmd-.).

SuperCollider Help (Cmd-D)

On the top of this window is a 'Quick lookup' field. Here you can type the texts as stated
below after 'Type:' to find the currently existing help guides. Not all guides are as useful,
but this will be indicated as well as errors that still exist.

WFSCollider

Tutorials

 Type: WFSCollider

A WFSCollider tutorial
This is a good startingpoint when beginning to use WFSCollider.
There are a few errors: to open a new Score, go to menu Scores > New.
To add a new Event, click on the + in the Score window.
Actually, an Event is the same as a Chain. The default Chain of an Event is
a bufSoundFile and a wfsStaticPoint (this last one is a WFS Udef).
diskSndFile = diskSoundFile.
bufSndFile = bufSoundFile.
To see how wfsCirclePath is written, in the UDefs window, click on the
arrow next to wfs_control, and next to wfsCirclePath, click on the icon.
To add a Udef inbetween to other Udefs in the Chain window: drag a Udef
from the UDefs window to just below the bottom of the Udef where you
want to place it, and watch out for a blue line. Drop the Udef on this blue
line.

Working with WFSCollider : Appendix B:
A walk through the helpfiles : Helpfiles

 128

Guides

Type: WFSCollider

WFSCollider V2.0 Overview
A good introduction to how the software is organised.
A Score inside a Score is the same as a Folder inside a Score.
To open a new Score, go to menu Scores > New.
UScoreLists are still under construction.

WFSCollider Visual Guide
The interfaces of the Chain and Score window explained.
New additions to the Chain window: single window, and code.
Single window opens the Chains of the Events you double-click in the same
window, if you turn this off, each Chain will open in its own window.
If you click on code and the Defs are editable, you can edit the code of the
plug-in, or just have a look at it.
With the remark about the Score that double-clicking on an empty area
changes the start position of the Score is meant that the current play
position changes.
The OSC button in the Score window is a new addition that can be used
when controlling WFSCollider live.

WFSCollider Panners
A good introduction to the different WFS-panners.
The statement that the decrease in level is -6 dB when doubling the
distance for point sources in real world situations is not completely
accurate. Inside a building with a lot of reverb this may be as little as -3
dB. It depends on how much the sound that is directed away from you is
reflected by the surroundings.

WFSCollider Code interface
An example not for the weak of mind. It uses a list comprehension. The
new method of UChain is called with the arguments as an Array:
UChain(*arg).
Select all the code and press Enter or Shift Return to see what happens

References

Type: Wave Field

Wave Field Synthesis
The first part of this explanation is wrong because inside and outside in the
statements is reversed. The interesting point is not that sounds can be
placed behind the speakers, this is also possible in stereo, but that the
sound can be placed in front, that means, inside the speakersystem.

Working with WFSCollider : Appendix B:
A walk through the helpfiles : Helpfiles

 129

Unit Lib

Classes

Type: U

U
This is the 'Unit'. The relation between Udefs and U's is explained and how
to set the parameters as well. The U's are combined into a UChain to make
sound.
There is also some explanation about the GUI of the Chain window. The U's
and the UChains are programmed according to the MVC Design Pattern, so
it does not matter from where a paramater is changed, all GUI's will
change accordingly.

Type: UChain

UChain

This has a good explanation of UChain and the Chain window.
New additions to the Chain window: single window, and code.
Some of the class and instance methods are described as well.
At the end is a code example. This example shows how to create some
Udefs. To try the settings of fadeIn and fadeOut, execute prepareAndStart
and release again. The same hold for both examples with dur.
The example with setAudioOut makes no difference because these settings
were already made in de declaration of the UChain. To see the effect, go to
the Chain window and click on i/o in the toolbar. Now change audio out 0 of
one of the sines and then execute setAudioOut.

Type: Mass

MassEditU
At the bottom there is an example in code that shows how you can create
10 sinewave oscilators and show them in a window, and then how to create
a MassEditU window to control all 10 sinewave oscillators at the same time.

MassEditUChain
There's a typo in the example at the bottom of this helpfile: \whitenoise
should be \whiteNoise.
In the mass-edit window you see 10 Chain windows. In the MassEditUChain
window you can control 10 Chains at once.

Type: ObjectWith

ObjectWithArgs
This is the Superclass of U and MassEditU. There is nothing added to this
helpfile.

Type: UScore

UScore

Working with WFSCollider : Appendix B:
A walk through the helpfiles : Helpfiles

 130

There is an example at the bottom of the helpfile. The argument of UScore
is formatted as an Array: (UScore(*Function.value)). Here you see how
you can generate a Score with code.
Double-click on the first parenthesis and execute the code. You see a Score
window. Press play in the Score window.
Now double-click on the second opening parenthesis. Do not press play in
the Score window, but execute the last lines of code.

Type: UScoreE

UScoreEditor
Manages the editing possibilities of the Score window. There is nothing
added to this helpfile.

Type: USess

USession
There is an example at the bottom of the helpfile. Here you can see how all
this knowledge can be combined in a Session window.

References

Type: Unit L

Unit Library

This is the reference helpfile that explains how to startup ULib, Udefs and
U's, what smart arguments are, how to set the Specs of the Units,
FreeUdefs, MultiUdefs, Multiple Servers, OSC control, UnitRacks and some
other things that are also expanded upon in other helpfiles.
In the Arg values example, if you execute the last line of code several
times, you can see that the arguments of the sinewave oscilator are
observed.

Working with WFSCollider : Appendix C:
Working with the Game of Life system : Starting up the system

 131

Appendix C:
Working with the Game of Life system

Starting up the system

- Write date, name and time in the logbook.
- Turn ON the switch on the power strip (in a corner) named ‘Master All’.
- Turn ON the switches on the 2 power strips (in both corners) named ‘MOTU + Comp’
and turn on the 2 Servers (in flight cases in both corners) (on the front of the computer:
<- ON).
- Make or check the connections to the MacBook:
 - FW400 cable named 'to MacBook'.
 - Blue Ethernet cable.
 - Power cable.
- Start up the MacBook.
- Move with your mouse to the bottom of the
screen to open the Dock and click on 'WFSCollider’

- In WFSCollider:

- Look at the Server Window ('WFSServers')
and watch the fields named ‘wfs1_1’ (on the
top) and ‘wfs2_1’ (the first of the second 8
rows) turn green. The other ‘wfsX_X’ fields will also turn green, one by one, with apx.
10 seconds intervals. Wait until all fields are green

- Look at the Server Window ('WFSServers') and watch all the way to the left of the
fields named ‘wfs1_1’, ‘wfs2_1’, etc.: you see red numberboxes.

K F R ? master (192.168.2.10) Latency 0.2

wfs_master CPU: 0.0/0.1 Synths/Defs: 0/284
sync shut down hosts

k x multi1 (192.168.2.11/Game Of Life 1)
0 wfs1_1 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_2 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_3 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_4 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_5 CPU: 0.0/0.0 Synths/Defs: 0/329
0 wfs1_6 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_7 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_8 CPU: 0.0/0.1 Synths/Defs: 0/329
k x multi2 (192.168.2.12/Game Of Life 2)
0 wfs2_1 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_2 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_3 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_4 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_5 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_6 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_7 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_8 CPU: 0.0/0.1 Synths/Defs: 0/329

K F R ? master (192.168.2.10) Latency 0.2

wfs_master CPU: 0.1/0.1 Synths/Defs: 0/284
sync shut down hosts

k x multi1 (192.168.2.11/Game Of Life 1)
0 wfs1_1 CPU: 0.0/0.2 Synths/Defs: 0/329
0 wfs1_2 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_3 CPU: 0.0/0.2 Synths/Defs: 0/329
0 wfs1_4 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_5 CPU: 0.0/0.0 Synths/Defs: 0/329
0 wfs1_6 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_7 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_8 CPU: 0.1/0.6 Synths/Defs: 0/329
k x multi2 (192.168.2.12/Game Of Life 2)
0 wfs2_1 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_2 CPU: 0.1/0.1 Synths/Defs: 0/329
0 wfs2_3 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_4 CPU: 0.1/0.2 Synths/Defs: 0/329
0 wfs2_5 CPU: 0.0/0.0 Synths/Defs: 0/329
0 wfs2_6 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_7 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_8 CPU: 0.0/0.1 Synths/Defs: 0/329

Working with WFSCollider : Appendix C:
Working with the Game of Life system : Working with the system

 132

Now click on the ‘sync’ button. Repeat this a few times, and if everything is working
correctly the numbers you see shouldn't change and the red numberboxes should
now become white.

- After 15 minutes, click again on the 'sync' button to check if the system is stable.

(if something goes wrong, check for loose cables)
(if the CPU in the Server Window ('WFSServers') in WFSCollider gets over 100% at some
point, click again on the 'sync' button to restore synchronization)
 - If everything is in working order, turn ON the switch on the power strips (in both
corners) named ‘Amps’.
 - On the Desktop click on ‘WFSSoundFiles MOUNT.command’. A volume appears on the
Desktop named 'WFSSoundFiles'.
The system is now in operation.

Working with the system

If this is your first time on the system see the chapter ‘Putting files on the system’.
If you have already made a score:

go to the menu Scores en select Open.... Go to your own folder, choose the score
you want to load and click on Open.

If you want to work on a new score:
In WFSCollider in the menu Scores select New. In the Menu Scores select Add Event
(Shift-Option-Command-A), or click the (+) button in the Score Editor window, and
next select the Event in the Score Editor and click on the (i) button in the toolbar (or
in menu Scores select Edit (Option-Command-I)). In the UChain Window, go to
soundFile and click on the Folder icon. Go to your folder, select a sound file and click
on Open.

Click on the Play buton at the bottom of the Score Editor and you are ready to go.

Putting files on the system

In the Desktop click on ‘WFSSoundFiles MOUNT.command’ (if you have not done this
yet). A volume appears on the Desktop named 'WFSSoundFiles'.
Doubleclick on the volume ‘WFSSoundFiles’.

K F R ? master (192.168.2.10) Latency 0.2

wfs_master CPU: 0.1/0.1 Synths/Defs: 0/284
sync shut down hosts

k x multi1 (192.168.2.11/Game Of Life 1)
0 wfs1_1 CPU: 0.0/0.2 Synths/Defs: 0/329
0 wfs1_2 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_3 CPU: 0.0/0.2 Synths/Defs: 0/329
0 wfs1_4 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_5 CPU: 0.0/0.0 Synths/Defs: 0/329
0 wfs1_6 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_7 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs1_8 CPU: 0.1/0.6 Synths/Defs: 0/329
k x multi2 (192.168.2.12/Game Of Life 2)
0 wfs2_1 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_2 CPU: 0.1/0.1 Synths/Defs: 0/329
0 wfs2_3 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_4 CPU: 0.1/0.2 Synths/Defs: 0/329
0 wfs2_5 CPU: 0.0/0.0 Synths/Defs: 0/329
0 wfs2_6 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_7 CPU: 0.0/0.1 Synths/Defs: 0/329
0 wfs2_8 CPU: 0.0/0.1 Synths/Defs: 0/329

K F R ? master (192.168.2.10) Latency 0.2

wfs_master CPU: 0.0/0.1 Synths/Defs: 0/284
sync shut down hosts

k x multi1 (192.168.2.11/Game Of Life 1)
699252 wfs1_1 CPU: 0.0/0.1 Synths/Defs: 0/329
702790 wfs1_2 CPU: 0.0/0.1 Synths/Defs: 0/329
703970 wfs1_3 CPU: 0.0/0.1 Synths/Defs: 0/329
698720 wfs1_4 CPU: 0.0/0.1 Synths/Defs: 0/329
701764 wfs1_5 CPU: 0.0/0.1 Synths/Defs: 0/329
697724 wfs1_6 CPU: 0.0/0.1 Synths/Defs: 0/329
697698 wfs1_7 CPU: 0.0/0.1 Synths/Defs: 0/329
697688 wfs1_8 CPU: 0.0/0.1 Synths/Defs: 0/329
k x multi2 (192.168.2.12/Game Of Life 2)
697736 wfs2_1 CPU: 0.0/0.1 Synths/Defs: 0/329
696680 wfs2_2 CPU: 0.0/0.1 Synths/Defs: 0/329
697212 wfs2_3 CPU: 0.0/0.1 Synths/Defs: 0/329
696720 wfs2_4 CPU: 0.0/0.2 Synths/Defs: 0/329
697232 wfs2_5 CPU: 0.0/0.2 Synths/Defs: 0/329
696751 wfs2_6 CPU: 0.1/1.9 Synths/Defs: 0/329
697228 wfs2_7 CPU: 0.0/0.2 Synths/Defs: 0/329
696668 wfs2_8 CPU: 0.0/0.1 Synths/Defs: 0/329

Working with WFSCollider : Appendix C:
Working with the Game of Life system : On your own computer

 133

If you have not done this before, make a folder in the volume 'WFSSoundFiles' with your
own name.
Drag your soundfiles in this folder (audiofiles, scorefiles, etc.). Inside this folder you can
use any folder organization you like. If you are finished with your project, clean up the
folder, since we do not have infinite amounts of disk space...
In the Desktop double-click on 'Distribute soundfiles.command'. The files are copied
from the folder 'WFSSoundFiles' on Server 1 to the folder 'WFSSoundFiles' on 'Server 2'.
(If you already have files with the same name in the same folder on 'Server 2' they will
be replaced if changed).
Problems:
Sometimes the mounting of the disk does not work correctly resulting in warnings in the
Post window that the path could not be found. Restarting the MacBook should solve this
problem.

On your own computer
If you create your score files at home using WFSCollider, make sure that you put keep
your whole project in one folder. The score file(s) should be at the top level of this
folder. Sound files and other data files used for the score should all be in the folder as
well, possibly in subfolders. This way you can move your project to the system by
copying that whole folder. All file references in the score are saved as relative
references.
If you use a sound file in your score that is located somewhere else on your disk, you
can use the operations -> copy to... function in the small menu that appears in the
UChain window. With this function you can copy your soundfile to the folder where your
score is in. Make sure to save the score again after doing this. There is also a function
named “copy all”, which appears if you press the (i) button in the Score Editor while
nothing is selected, or while a group of events is selected.

Shutting down the system
- Turn OFF the switches on the powerstrips named ‘Amps’ (in both corners).
- Unmount the disk ‘WFSSoundFiles’:

select 'WFSSoundFiles' on the Desktop and type Command-E, or drag it to the eject
icon in the dock *)

- In the Server Window ('WFSServers') click on 'shut down hosts'.
- An Alert appears. Click on 'Shut Down' in the Alert.
- Another warning appears: ‘Are the AMPLIFIERS switched OFF?’. If the amplifiers are
switched off, click on ‘yes, shut down now’.
- Wait until all the green fields in the Server Window have turned white, and the
Servers have shut down (you hear a clicking sound).

- Turn off the MacBook.
- Turn off the switch on the power strips named ‘MOTU + Comp’ (in both corners).
- Turn off the switch on the power strip named ‘Master All’ (in the corner).
- Write a report of your findings in the logbook.

