
Master Thesis: SoundScape Renderer
Networking

David Runge
Audiokommunikation und -technologie

Fachgebiet Audiokommunikation
Technische Universität Berlin

dave@sleepmap.de

October 13, 2016

dave@sleepmap.de


Abstract

Wave Field Synthesis (WFS) as a technological concept has been around for
many years now and all over the world several institutions run small and some
even large scale setups ranging from single speaker lines to those facilitating
a couple of hundred loudspeakers respectively.
The still evolving implementations are driven by several rendering engines,
of which two free and open-source ones, namely sWONDER and SoundScape
Renderer, have (partially) been developed at TU Berlin.
The latter due to its current design is not yet able to render for large scale
setups, ie. those using several computers to render audio on a loudspeaker
setup, due to the high amount of channels.
Its solid codebase however, which additionally offers a framework for many
more renderering types, and the ongoing development, deems further work
on this application a good future investment.
This work is about the extension of the SoundScape Renderer’s functionality
to turn it into a networking application for large scale WFS setups.



0.1 Introduction
Wave Field Synthesis (WFS) describes a spatial technique for rendering au-
dio. As such it aims at synthesizing a sound field of desired acoustic pref-
erence in a given listening area, assuming a planar reproduction to be most
suitable for most applications.
WFS is typically implemented using a curved or linear loudspeaker array
surrounding the listening area.
Several free and open-source renderer applications exist for WFS environ-
ments, with varying stages of feature richness.
The proposed work will focus on one of them and its extension towards WFS
on large scale systems.

0.2 Free and open-source wave field synthesis
renderers

To date there exist three (known of) free and open-source Wave Field Syn-
thesis renderers, which are all JACK Audio Connection Kit (JACK) [? ]
clients:

• sWONDER [? ], developed by Technische Universität Berlin, Germany

• WFSCollider [? ], developed by Game Of Life Foundation [? ], The
Hague, Netherlands

• SoundScape Renderer (SSR) [? ], developed by Quality & Usability
Lab, Deutsche Telekom Laboratories and TU Berlin and Institut für
Nachrichtentechnik, Universität Rostock

Currently only WFSCollider and the SSR are actively maintained and de-
veloped, thussWONDER, although used in some setups, loses significance.
Generally it can be said, that different concepts apply to the three renderers,
which are about to be explained briefly in the following sections.

0.2.1 WONDER
sWONDER [? ] consists of a set of C++ applications that provide binaural
and WFS rendering. In 2007 it was specifically redesigned [? ] to cope with
large scale WFS setups in which several (computer) nodes, providing several
speakers each, drive a system together.
In these setups each node receives all available audio streams (which represent

1

http://jackaudio.org/
https://sourceforge.net/projects/swonder/
https://github.com/GameOfLife/WFSCollider
http://gameoflife.nl/en
http://spatialaudio.net/ssr/


one virtual audio source respectively) redundantly and a master application
signals which node is responsible for rendering what source on which speaker.
It uses Open Sound Control (OSC) for messaging between its parts and for
setting its controls. Apart from that, it can be controlled through a Graphical
User Interface (GUI), that was specifically designed for it. Unfortunately
sWONDER has not been actively maintained for several years, has a complex
setup chain and many bugs, that are not likely to get fixed any time soon.

0.2.2 WFSCollider
WFSCollider was built on top of SuperCollider 3.5 [? ] and is also capa-
ble of driving large scale systems. It uses a different approach in doing so,
though: Whereas withsWONDER all audio streams are distributed to each
node, WFSCollider usually uses the audio files to be played on all machines
simultaneously and synchronizes between them.
It has a feature-rich GUI in the “many window” style, making available time
lines and movement of sources through facilitating what the sclang (Super-
Collider programming language) has to offer.
As WFSCollider basically is SuperCollider plus extra features, it is also an
OSC enabled application and can thus also be used for mere multi-channel
playback of audio.
Although it has many useful features, it requires MacOSX (Linux version
still untested) to run, is built upon a quite old version of SuperCollider and
is likely never to be merged into it, due to many core changes to it.

0.2.3 SoundScape Renderer
SoundScape Renderer (SSR), also a C++ application, running on Linux and
MacOSX, is a multi-purpose spatial audio renderer, as it is not only capable
of Binaural Synthesis and WFS, but also Higher-Order Ambisonics and Vec-
tor Base Amplitude Panning.
It can be used with a GUI or headless (without one), depicting the virtual
sources, their volumes and positions, alongside which speakers are currently
used for rendering a selected source. SSR uses TCP/IP sockets for commu-
nication and thus is not directly OSC enabled. This functionality can be
achieved using the capapilities of other applications such as PureData [? ]
in combination with it though.
Unlike the two renderers above, the SSR is not able to run large-scale WFS
setups, as it lacks the features to communicate between instances of itself
on several computers, while these instances serve a subset of the available
loudspeakers.

2

https://supercollider.github.io
https://supercollider.github.io
http://puredata.info


0.3 Extending Sound Scape Renderer func-
tionality

The SSR, due to its diverse set of rendering engines, which are made available
through an extensible framework, and its clean codebase, is a good candi-
date for future large scale WFS setups. These type of features are not yet
implemented though and will need testing.
Therefore I propose the implementation and testing of said feature, making
the SSR capable of rendering on large scale WFS setups with many nodes,
controlled by a master instance.
The sought implementation is inspired by the architecture of sWONDER,
but instead of creating many single purpose applications, the master/node
feature will be made available through flags to the ssr executable, when start-
ing it. This behavior is already actively harnessed eg. for selecting one of the
several rendering engines. While the SSR already has an internal logic to

ssr-networking.pdf

Figure 1: A diagram displaying the SSR master/node setup with TCP/IP socket connections over network
(green lines), audio channels (red dashed lines) and OSC connection (blue dashed line). Machines are
indicated as red dashed rectangles and connections to audio hardware as outputs of SSR nodes as black
lines below them.

know which loudspeaker will be used for what virtual audio source, this will
have to be extended to be able to know which renderer node has to ren-
der what source on which loudspeaker (see Figure 1). To achieve the above
features, the SSR’s messaging (and thus also settings) capabilities have to
be extended alongside its internal logic concerning the selection of output
channels (and the master to node notification thereof). To introduce as lit-
tle redundant code as possible, most likely a “the client knows all” setup is
desirable, in which each node knows about the whole setup, but is also set
to only serve its own subset of loudspeakers in it. This will make sure that
the rendering engine remains functional also in a small scale WFS setup.
The lack of a direct OSC functionality, as provided by the two other render-
ers, will not be problematic, as master and nodes can communicate through
their builtin TCP/IP sockets directly and the master can, if needed, be con-
trolled via OSC.

0.4 Prelimenaries
In preparation to the exposé I tried to implement a side-by-side installation,
using Arch Linux on a medium scale setup, facilitating the WFS system of
the Electronic Studio at TU Berlin. Unfortunately the proprietary Dante

3



driver, that is used in that system is very complex to be built, as well as
underdeveloped and thus keeps the system from being easily updated, which
is needed for testing purposes (finding a suitable real-time, low-latency Linux
kernel), trying out new software features, building new software and keeping
a system safe. The driver will most likely require changes to the hardware
due to implemention of hardware branding by the vendor and dire testing
before usage.
Although eventually using a proper WFS setup for testing will be necessary,
it is luckily not needed for implementing the features, as they can already be
worked out using two machines running Linux, JACK and the development
version of SSR.
The hardware of the large scale setup at TU Berlin in H0104 is currently
about to be updated and therefore a valuable candidate for testing of the
sought SSR features.

0.5 Schedule
I propose a six month schedule for the implementation and testing of the
changes to the source code and writing of an accompanying thesis. The
following rough schedule should serve as a guideline for the realization of the
work:

4



Schedule
Week Implementation Tests Thesis
1 Reading into codebase
2 Reading into codebase
3 Reading into codebase
4 Reading into codebase
5 Assessing changes Documentation
6 Assessing changes Documentation
7 Implementing changes
8 Implementing changes
9 Implementing changes
10 Implementing changes
11 Implementing changes
12 Implementing changes
13 Implementing changes Preparation
14 Implementing changes Preparation
15 Small scale setup Writing
16 Large scale setup Writing
17 Large scale setup Writing
18 Large scale setup Writing
19 Large scale setup (scripts) Writing
20 Large scale setup (scripts) Writing
21 Large scale setup (scripts) Writing
22 Writing
23 Writing
24 Writing

5



Bibliography

6


	Introduction
	Free and open-source wave field synthesis renderers
	WONDER
	WFSCollider
	SoundScape Renderer

	Extending Sound Scape Renderer functionality
	Prelimenaries
	Schedule

