aboutsummaryrefslogtreecommitdiffstats
path: root/random241sensor.py
diff options
context:
space:
mode:
Diffstat (limited to 'random241sensor.py')
-rwxr-xr-xrandom241sensor.py157
1 files changed, 157 insertions, 0 deletions
diff --git a/random241sensor.py b/random241sensor.py
new file mode 100755
index 0000000..624cc29
--- /dev/null
+++ b/random241sensor.py
@@ -0,0 +1,157 @@
+#!/usr/bin/python2
+
+import logging
+import cv
+import numpy as np
+#import time
+
+# Bool to define wether to capture the cam or not
+capture = True
+# Bool to define wether to show the capture stream or not
+showStream = True
+white_threshold = 30.0
+checked = np.zeros((1, 1), dtype=np.int)
+mat = np.zeros((1, 1))
+clusters = []
+
+
+def capture(camNumber, showStream):
+ # Open stream for that camera
+ logging.info('Capture from camera #%d', camNumber)
+ cam = cv.CaptureFromCAM(int(camNumber))
+ # Stream to output window as long as it is active
+ return cam
+ while capture:
+ stream = cv.QueryFrame(cam)
+ if showStream:
+ cv.ShowImage("Americium 241", stream)
+
+
+def set_capture(onOrOff):
+ if onOrOff == bool:
+ global capture
+ capture = onOrOff
+
+
+def frame_to_mat(img):
+ cv.Smooth(img, img, cv.CV_GAUSSIAN, 3, 0)
+ mat = cv.GetMat(img)
+ frame_values = np.asarray(mat)
+ return frame_values
+
+
+# Convert a bgr matrix to grayscale
+def bgr2gray(mat):
+ b, g, r = mat[:, :, 0], mat[:, :, 1], mat[:, :, 2]
+ gray = 0.1140 * b + 0.5870 * g + 0.2989 * r
+ return gray
+
+
+# Find a white dot in the black input matrix
+def find_dot(mat_input):
+ global mat
+ global checked
+ global clusters
+ mat = mat_input.copy()
+ if np.ndim(mat) >= 2:
+ # Create array to hold the already checked pixels
+ checked = np.zeros((len(mat), len(mat[0])), dtype=np.int)
+ # Traverse the grayscale values in search of a bright pixel
+ for i in range(0, len(mat) - 1):
+ for j in range(0, len(mat[0]) - 1):
+ # Check if it hasn't been checked yet
+ if (checked[i][j] != 1):
+ # Find clusters, if the pixel is above threshold
+ if (mat[i][j] >= white_threshold):
+ #print "Hit above white threshold"
+ # Add a new cluster to the list of clusters
+ cluster = []
+ clusters.append(cluster)
+ # Find the rest of the cluster
+ find_cluster(i, j)
+ #print "Number at: %dx%dpx : %s" % (j, i, mat[i][j])
+ checked[i][j] = 1
+ # If there's one or more clusters, calculate its or their balance point
+ if len(clusters) > 0:
+ balance_point = cluster_to_balance_point()
+ logging.info('%s, %s', balance_point[1], balance_point[0])
+ #print balance_point
+ # Empty the global clusters variable again
+ del clusters[:]
+ return balance_point
+ else:
+ logging.error('Input matrix has wrong dimension!')
+
+
+# Find cluster around a non-black pixel
+def find_cluster(x, y):
+ global checked
+ global mat
+ global clusters
+ # Append the current white dot to the last cluster
+ dot = np.array([x, y, mat[x][y]])
+ clusters[len(clusters) - 1].append(dot)
+ # Search for surrounding white dots now
+ # Search one pixel further right
+ if (len(mat) - 1 >= (x + 1)) and (mat[x + 1][y] >= white_threshold) \
+ and (checked[x + 1][y] != 1):
+ find_cluster(x + 1, y)
+ # Search one pixel further right and down
+ if (len(mat) - 1 >= (x + 1)) and (len(mat[0]) - 1 >= y + 1) and \
+ (mat[x + 1][y + 1] >= white_threshold) \
+ and (checked[x + 1][y] != 1):
+ find_cluster(x + 1, y + 1)
+ # Search one pixel further down
+ if (len(mat[0]) - 1 >= y + 1) and \
+ (mat[x][y + 1] >= white_threshold) and (checked[x][y + 1] != 1):
+ find_cluster(x, y + 1)
+ # Search one pixel further down and further left
+ if (len(mat[0]) - 1 >= y + 1) and x - 1 >= 0 \
+ and (mat[x - 1][y + 1] >= white_threshold) \
+ and (checked[x - 1][y + 1] != 1):
+ find_cluster(x - 1, y + 1)
+ # Add this pixel to the list of checked pixels
+ checked[x][y] = 1
+
+
+# Create balance point from cluster
+# TODO: Make possible to choose only most significant cluster
+def cluster_to_balance_point():
+ global clusters
+ cluster_balances = []
+ x_balance = 0.0
+ y_balance = 0.0
+ for cluster in clusters:
+ mean_x = 0.0
+ mean_y = 0.0
+ sum_total = 0.0
+ for dot in cluster:
+ # Calculate X balance (x * intensity)
+ mean_x = mean_x + dot[0] * dot[2]
+ # Calculate Y balance (y * intensity)
+ mean_y = mean_y + dot[1] * dot[2]
+ # Calculate Y total (all intensity summed up)
+ sum_total = sum_total + dot[2]
+ # Add up the balances and put them into a list
+ cluster_x_balance = mean_x / sum_total
+ cluster_y_balance = mean_y / sum_total
+ cluster_balances.append([cluster_x_balance, cluster_y_balance])
+ # If it's more than one cluster, balance between them
+ if len(cluster_balances) > 1:
+ logging.info('Balancing between a couple of clusters.')
+ total_cluster_x_balance = 0.0
+ total_cluster_y_balance = 0.0
+ for balance in cluster_balances:
+ total_cluster_x_balance = total_cluster_x_balance + balance[0]
+ total_cluster_y_balance = total_cluster_y_balance + balance[1]
+ x_balance = total_cluster_x_balance / float(len(cluster_balances))
+ y_balance = total_cluster_y_balance / float(len(cluster_balances))
+ else:
+ logging.info('Balancing between one cluster.')
+ x_balance = cluster_x_balance
+ y_balance = cluster_y_balance
+ return [x_balance, y_balance]
+
+
+# TODO: Function to add up balances
+# TODO: Function to calculate forced balance