aboutsummaryrefslogtreecommitdiffstats
path: root/random241sensor.py
diff options
context:
space:
mode:
Diffstat (limited to 'random241sensor.py')
-rwxr-xr-xrandom241sensor.py186
1 files changed, 0 insertions, 186 deletions
diff --git a/random241sensor.py b/random241sensor.py
deleted file mode 100755
index e9525e4..0000000
--- a/random241sensor.py
+++ /dev/null
@@ -1,186 +0,0 @@
-#!/usr/bin/python2
-
-import logging
-import cv
-import numpy as np
-import time
-
-# Bool to define wether to capture the cam or not
-capture = True
-# Bool to define wether to show the capture stream or not
-showStream = True
-white_threshold = 15.0
-checked = np.zeros((1, 1), dtype=np.int)
-mat = np.zeros((1, 1))
-clusters = []
-balances = []
-
-
-def capture(camNumber, showStream):
- # Open stream for that camera
- logging.info('Capture from camera #%d', camNumber)
- cam = cv.CaptureFromCAM(int(camNumber))
- # Stream to output window as long as it is active
- return cam
- while capture:
- stream = cv.QueryFrame(cam)
- if showStream:
- cv.ShowImage("Americium 241", stream)
-
-
-def set_capture(onOrOff):
- if onOrOff == bool:
- global capture
- capture = onOrOff
-
-
-def frame_to_mat(img):
- cv.Smooth(img, img, cv.CV_GAUSSIAN, 3, 0)
- mat = cv.GetMat(img)
- frame_values = np.asarray(mat)
- return frame_values
-
-
-# Convert a bgr matrix to grayscale
-def bgr2gray(mat):
- b, g, r = mat[:, :, 0], mat[:, :, 1], mat[:, :, 2]
- gray = 0.1140 * b + 0.5870 * g + 0.2989 * r
- return gray
-
-
-# Find a white dot in the black input matrix
-def harvest_entropy(mat_input):
- global mat
- global checked
- global clusters
- global balances
- mat = mat_input.copy()
- if np.ndim(mat) >= 2:
- # Create array to hold the already checked pixels
- checked = np.zeros((len(mat), len(mat[0])), dtype=np.int)
- # Traverse the grayscale values in search of a bright pixel
- for i in range(0, len(mat) - 1):
- for j in range(0, len(mat[0]) - 1):
- # Check if it hasn't been checked yet
- if (checked[i][j] != 1):
- # Find clusters, if the pixel is above threshold
- if (mat[i][j] >= white_threshold):
- #print "Hit above white threshold"
- # Add a new cluster to the list of clusters
- cluster = []
- clusters.append(cluster)
- # Find the rest of the cluster
- find_cluster(i, j)
- #print "Number at: %dx%dpx : %s" % (j, i, mat[i][j])
- checked[i][j] = 1
- # If there's one or more clusters, calculate its or their balance point
- if len(clusters) > 0:
- balance_point = cluster_to_balance_point()
- logging.info('%s, %s', balance_point[1], balance_point[0])
- #print balance_point
- # Empty the global clusters variable again
- del clusters[:]
- balances.append([time.time(), balance_point])
- mean = mean_balances()
- logging.info('%s, %s (balance mean)', mean[1], mean[0])
- floats = coordinate_to_float(balance_point[0], balance_point[1])
- logging.info('%s, %s (float)', floats[1], floats[0])
- #return balance_point
- return floats
- else:
- logging.error('Input matrix has wrong dimension!')
-
-
-# Find cluster around a non-black pixel
-def find_cluster(x, y):
- global checked
- global mat
- global clusters
- # Append the current white dot to the last cluster
- dot = np.array([x, y, mat[x][y]])
- clusters[len(clusters) - 1].append(dot)
- # Search for surrounding white dots now
- # Search one pixel further right
- if (len(mat) - 1 >= (x + 1)) and (mat[x + 1][y] >= white_threshold) \
- and (checked[x + 1][y] != 1):
- find_cluster(x + 1, y)
- # Search one pixel further right and down
- if (len(mat) - 1 >= (x + 1)) and (len(mat[0]) - 1 >= y + 1) and \
- (mat[x + 1][y + 1] >= white_threshold) \
- and (checked[x + 1][y] != 1):
- find_cluster(x + 1, y + 1)
- # Search one pixel further down
- if (len(mat[0]) - 1 >= y + 1) and \
- (mat[x][y + 1] >= white_threshold) and (checked[x][y + 1] != 1):
- find_cluster(x, y + 1)
- # Search one pixel further down and further left
- if (len(mat[0]) - 1 >= y + 1) and x - 1 >= 0 \
- and (mat[x - 1][y + 1] >= white_threshold) \
- and (checked[x - 1][y + 1] != 1):
- find_cluster(x - 1, y + 1)
- # Add this pixel to the list of checked pixels
- checked[x][y] = 1
-
-
-# Create balance point from cluster
-# TODO: Make possible to choose only most significant cluster
-def cluster_to_balance_point():
- global clusters
- cluster_balances = []
- x_balance = 0.0
- y_balance = 0.0
- for cluster in clusters:
- mean_x = 0.0
- mean_y = 0.0
- sum_total = 0.0
- for dot in cluster:
- # Calculate X balance (x * intensity)
- mean_x = mean_x + dot[0] * dot[2]
- # Calculate Y balance (y * intensity)
- mean_y = mean_y + dot[1] * dot[2]
- # Calculate Y total (all intensity summed up)
- sum_total = sum_total + dot[2]
- # Add up the balances and put them into a list
- cluster_x_balance = mean_x / sum_total
- cluster_y_balance = mean_y / sum_total
- cluster_balances.append([cluster_x_balance, cluster_y_balance])
- # If it's more than one cluster, balance between them
- if len(cluster_balances) > 1:
- logging.info('Balancing between a couple of clusters.')
- total_cluster_x_balance = 0.0
- total_cluster_y_balance = 0.0
- for balance in cluster_balances:
- total_cluster_x_balance = total_cluster_x_balance + balance[0]
- total_cluster_y_balance = total_cluster_y_balance + balance[1]
- x_balance = total_cluster_x_balance / float(len(cluster_balances))
- y_balance = total_cluster_y_balance / float(len(cluster_balances))
- else:
- logging.info('Balancing between one cluster.')
- x_balance = cluster_x_balance
- y_balance = cluster_y_balance
- return [x_balance, y_balance]
-
-
-# Displays the mean balance calculated from all balances
-def mean_balances():
- global balances
- mean_balance = [0.0, 0.0]
- for balance in balances:
- mean_balance[0] = mean_balance[0] + balance[1][0]
- mean_balance[1] = mean_balance[1] + balance[1][1]
- mean_balance[0] = mean_balance[0] / float(len(balances))
- mean_balance[1] = mean_balance[1] / float(len(balances))
- return mean_balance
-
-
-# Calculates float value between 0.0 and 1.0 from coordinate
-# TODO: insert on-the-fly mean_balance as parameter
-def coordinate_to_float(x, y):
- global mat
- width = float(len(mat))
- height = float(len(mat[0]))
-# balance_dim = [width / 2, height / 2]
- floatx = x / width
- floaty = y / height
- return [floatx, floaty]
-# TODO: Function to calculate floats from mean_balance on the fly